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Abstract—The PDG (Powered Descent Guidance) algorithm
provides a numerical method for onboard generation of guid-
ance profiles for use during the powered-descent phase of
Mars pinpoint or precision landing. The algorithm incor-
porates both state and control constraints, including mini-
mum and maximum thrust limits, glideslope constraints to
avoid impacting the surface, and speed and attitude con-
straints. These constraints are particularly important for
powered-descent scenarios requiring large-divert capabili-
ties to achieve pinpoint or precision landing. Additionally,
the constraints ensure that guidance profiles are physically
achievable. For instance, the thrust limits are particularly rel-
evant for spacecraft that implement rocket engines that cannot
be throttled off after ignition. The formulation of PDG poses
the problem as a SoCP (Second-order Cone Program) that
can be solved with numerically-efficient interior-point solvers
in a finite time to within a prescribed accuracy. This fea-
ture is ideal for onboard implementation during powered de-
scent where total flight time is short, thus guidance methods
must guarantee convergence to an achievable solution within
a short time. If a spacecraft can physically perform maneu-
vers to achieve pinpoint or precision landing (i.e., the prob-
lem is feasible), then the SoCP formulation of PDG will find
the solution. Further, this solution will satisfy the prescribed
constraints on position, fuel, thrust, speed and attitude.
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1. INTRODUCTION

The EDL (Entry, Descent, and Landing) phase of Mars lan-
der missions marks a mission event with significant risk and
uncertainty. The development of robust and effective GN&C
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(Guidance, Navigation and Control) algorithms, as well as
reliable hardware and sensor systems, is essential for the suc-
cess of EDL. The phases of a typical EDL system include a
hypersonic entry phase with a heat shield to slow the entry
vehicle, followed by a parachute phase (sub- and/or super-
sonic) and then a final descent phase either with air bags (as
with Mars Exploration Rover and Pathfinder) or powered de-
scent (Viking, Phoenix, and soon Mars Science Laboratory).

During EDL, significant uncertainty affects the descending
spacecraft and landing precision. The parachute phase typ-
ically dominates the uncertainty, as the dynamics are influ-
enced by the highly-variable atmospheric conditions on a
given Martian day (the atmosphere is highly variable in both
density and wind profiles). Active control of the parachute is
not yet a component in a typical Mars EDL, so current options
to null landing error include either long (and likely risky)
rover traverses across the Martian surface or improved guid-
ance during the powered descent phase. Powered-descent
guidance algorithms reduce the landing error by vectoring the
lander thrust to maneuver the lander toward the desired target.

The formulation of powered-descent guidance algorithms
must ensure that distance to the desired target is minimized
and that physical spacecraft constraints are considered in
planning the thrust profile. The guidance problem must incor-
porate the basic physics of powered descent, along with con-
straints on the position and velocity, such as avoiding subsur-
face flight (or descending within a prescribed glide-slope) and
limiting speed to avoid excessive drag or supersonic shock
waves (if the system design does not handle such velocities).
Lander systems typically utilize throttleable liquid thrusters
that cannot be shut off (throttled to zero thrust) after igni-
tion, hence, guidance algorithms must allow for both a max-
imum and minimum thrust magnitude. Additionally, attitude
constraints are incorporated in guidance algorithms to allow
designers to prevent the guidance solution from command-
ing undesirable thrust-pointing directions, such as downward
thrust toward the surface of Mars or attitudes that violate the
field of view of terrain-relative or other sensors necessary dur-
ing powered descent. These various constraints result in the
guidance algorithm trading required fuel and flight time to
not only satisfy the constraints but to also achieve the over-
all objective of either minimum-fuel pinpoint landing [1] or
minimum-landing-error precision landing [2].
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The EDL phase is a short-duration event that requires guid-
ance algorithms to be accurate and numerically efficient,
guaranteeing that a feasible solution will be obtained in a lim-
ited amount of time and be accurate. These characteristics
were considered in the development of the PDG (Powered
Descent Guidance) algorithm, which is a convex formulation
of the powered-descent guidance problem for pinpoint and
precision landing [1], [2]. The algorithm is implemented as
a SoCP (Second order Cone Program), which can be solved
with numerically-efficient interior-point solvers that converge
to within a desired accuracy in a specified number of steps [3],
[4], [5]. The convexity of PDG ensures that the global opti-
mal will be found for a feasible problem and that the solution
will be found in finite time. This is in contrast to non-convex
techniques that can become stuck in local minima, have no
bounds on computation time, and rely upon human operators
to provide good initial guesses.

Most of the powered-descent guidance constraints enforced
within PDG are convex. However, the non-zero lower bound
on thrust is a non-convex constraint. A primary contribu-
tion of the work in [1] implemented a relaxation on this con-
straint that provides a lossless convexification of the thrust
bound. Additionally, for attitude limits greater than 90◦ the
constraints are also non-convex, but an additional relaxation
provides a further lossless convexification so that the PDG al-
gorithm remains convex. These lossless convexifications en-
sure that feasible solutions of the relaxed guidance problem
are also feasible solutions to the original guidance problem.

This paper summarizes the capabilities of the PDG algorithm
and provides representative simulations to demonstrate vari-
ous landing scenarios. Section 2 provides an overview of the
original PDG algorithm from [1] with the relaxation on the
thrust constraint, along with a discussion of the additional re-
laxation to maintain convexity with attitude constraints. Sec-
tion 3 provides several simulations to demonstrate the effect
of the available state and control constraints in the algorithm,
and Section 4 provides some concluding remarks.

2. OVERVIEW OF ALGORITHM
FORMULATION

This section will provide an overview of the PDG (Powered-
Descent Guidance) algorithm for pinpoint landing. For fur-
ther details of this formulation, including rigorous proofs and
a related precision-landing version of the algorithm to mini-
mize landing error, refer to the references [1], [2].

The PDG algorithm provides three-degree-of-freedom trans-
lational guidance for a spacecraft descending in a constant
gravity field (g) with negligible aerodynamic forces and a
constant planetary rotation (ω). The attitude guidance for the
spacecraft is not a part of PDG, and the algorithm assumes
that separate attitude guidance and control algorithms are ca-
pable of providing the desired orientations for the transla-
tional thrust-vector directions provided by PDG. The thruster
configuration is assumed to be in a symmetric arrangement

about the spacecraft, as illustrated in Figure 1, with identical
canting angles (φ) and thrust magnitudes (T ) per thruster.

Side View

Figure 1. Symmetrically positioned, identical thrusters
provide a net thrust Tc along the spacecraft centerline.

The common thrust and cant angle for each thruster pro-
vides a net translation-only thrust along the spacecraft cen-
terline, as shown in the side view of the spacecraft. The algo-
rithm assumes that each thruster fires simultaneously to en-
sure translation-only thrust; a separate attitude guidance and
control system could use differential thrust to command atti-
tude (with yaw commanding achieved using separate attitude-
control thrusters). The net translational thrust (Tc) is given by

Tc = nthrT cosφ, (1)

where φ is the thruster cant angle, T is the thrust magnitude
per thruster, and nthr is the number of thrusters. Note, nthr is
an integer multiple of 4 for the spacecraft illustrated. Multiple
thrusters per corner could be needed to achieve desired thrust,
as is the case for the 2011 Mars Science Laboratory.

The coordinate system used to describe the guidance prob-
lem herein is illustrated in Figure 2, which also includes de-
scriptions for several variables within the PDG algorithm, in-
cluding initial position r0, initial velocity ṙ0, landing target
surface location q, and glideslope constraint angle γgs from
the landing target. The unit vectors e1, e2, and e3 associated
with the coordinate frame are also defined within the figure;
the frame is assumed to be a distance Rc from a Mars inertial
frame (this will appear within the spacecraft dynamics).

X

Y

Z

Origin

Landing Target

Glideslope

Constraint

Initial Position

Initial
Velocity

Optimal
Trajectory

Figure 2. The glideslope constraint requires guidance
profiles to remain above the surface and to remain within a

cone centered at the landing target and defined by angle γgs.

The glideslope constraint shown in Figure 2 requires the guid-
ance algorithm to maintain r(t) ∈ P,∀t ∈ [0, tf ]; i.e., the po-
sition trajectory must remain within glideslope set P during
powered descent:

P ,
{
r : ‖ST (r − r(tf ))‖ − cT (r − r(tf ))≤0

}
, (2)
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where

S =
[
e2 e3

]
, c =

1

tan γgs
e1. (3)

The magnitude of the combined thrust vector Tc has an up-
per bound, which is obvious for real systems. In addition, a
lower bound is enforced on the magnitude of Tc, which mod-
els thrusters that cannot be throttled to zero thrust after igni-
tion; this is a common feature of liquid thrusters. This mini-
mum and maximum thrust level is modeled as a constraint on
the norm of the thrust vector:

0 < ρ1 ≤ ‖Tc(t)‖ ≤ ρ2,∀t ∈ [0, tf ]. (4)

The upper bound on the norm of the thrust is a convex con-
straint, however, the convexity breaks down with the lower
bound. As will be discussed, a relaxation of this constraint
provides a lossless convexification for the PDG algorithm.

Thrust pointing constraints are incorporated in the PDG algo-
rithm to ensure that the translational guidance solution does
not generate thrust-vector directions that are outside of a de-
sired attitude cone. This attitude cone allows the guidance
to consider sensors and other systems (e.g., terrain-relative
navigation systems) that require a specific field of view to ob-
tain useful information. Further, mission requirements might
also preclude certain thrust orientations, for instance thrust-
ing toward the surface. These thrust pointing constraints are
expressed as

n̂TTc(t) ≥ ‖Tc(t)‖ cos θ, (5)

where θ ∈ [0◦, 180◦] is the maximum allowable attitude.
Constraint (5) is convex for θ ∈ [0◦, 90◦] but non-convex for
θ ∈ (90◦, 180◦]. As with the lower bound in (4), a relax-
ation will be discussed that provides a lossless convexifica-
tion for the pointing constraint when θ ∈ (90◦, 180◦]. Note,
the pointing constraints are defined with respect to a refer-
ence unit vector n̂, which would typically be in the direction
of the X axis (i.e., n̂ = e1).

Figure 3 illustrates the thrust constraints. The left image de-
picts the thrust magnitude bounds from (4), the center image
depicts the pointing constraints from (5) for θ > 90◦, and the
right image depicts the allowable thrust region at the intersec-
tion of the two constraint sets.

Thrust Magnitude Thrust Pointing Intersection of
Constraint Set Constraint Set Constraint Sets

Figure 3. Planar Representation of Thrust Constraints. The
thrust magnitude constraint set is non-convex. The thrust

pointing constraint is also non-convex for θ > 90◦.

The pinpoint landing version of the PDG algorithm mini-
mizes the fuel required to achieve pinpoint landing while si-
multaneously satisfying the powered-descent dynamics and
the aforementioned state and control constraints (including
maximum speed, available fuel, and initial and final condi-
tions). Note, an initial and final thrust direction can be en-
forced as well [1]; the final pointing constraint is useful to
ensure, for example, that the lander completes the PDG pro-
file in an upright orientation. Mathematically, the pinpoint
landing PDG algorithm is stated as the following optimiza-
tion problem:

Problem 1: (Non-convex Minimum-Fuel Guidance)

max
tf ,Tc(·)

m(tf )−m(0) = min
tf ,Tc(·)

∫ tf

0

α‖Tc(t)‖ dt

subject to the following dynamics and trajectory con-
straints, ∀t ∈ [0, tf ],

r̈(t) = −ω×(ω×r)− 2ω×ṙ + Tc(t)/m(t) + ḡ,

ṁ(t) = −α‖Tc(t)‖,
0 < ρ1 ≤ ‖Tc(t)‖ ≤ ρ2, n̂

TTc(t) ≥ ‖Tc(t)‖ cos θ,

m(tf ) ≥ mdry, r(t) ∈ P, ‖ṙ(t)‖ ≤ Vmax,

and the following boundary conditions

m(0) = mwet, r(0) = r0, ṙ(0) = ṙ0,

eT1 r(tf ) = 0, STr(tf ) = q, ṙ(tf ) = 0,

Tc(tf ) = ‖Tc(tf )‖n̂f ,

where set P and matrix S are defined in (2) and (3), respec-
tively, ḡ = g − ω×(ω×Rc), and parameters mwet, mdry,
α, ρ1, ρ2, n̂, Vmax, r0, ṙ0, q, n̂f are constant.

If pinpoint landing cannot be achieved with the available fuel,
then a precision landing version of the above Problem 1 in-
stead minimizes the landing error from the desired target q.
The precision landing, or fuel-limited targeting, version of
this problem is formulated in [2].

The general guidance algorithm in Problem 1 is non-convex
due to the constraints on the thrust vector. A significant con-
tribution of the work in [1] and [2] implemented a relaxed,
convex version of the thrust magnitude constraint (4) and rig-
orously proved that an optimal solution of the relaxed version
of Problem 1 (without thrust pointing constraints) was also
optimal for the unrelaxed problem. The relaxation provided a
lossless convexification for the thrust magnitude constraint,

‖Tc(t)‖ ≤ Γ(t), (6)
ρ1 ≤ Γ(t) ≤ ρ2,∀t ∈ [0, tf ]. (7)

The slack variable Γ used in the thrust magnitude relaxation
can also be used to relax the non-convex thrust pointing con-
straint. This new relaxation can also be rigorously proved
to provide a lossless convexification such that an optimal so-
lution of a relaxed version of Problem 1 with pointing con-
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straints is also an optimal solution for the unrelaxed problem.
The relaxed pointing constraints from (5) can be expressed as

n̂TTc(t) ≥ Γ(t) cos θ,∀t ∈ [0, tf ]. (8)

Making use of these relaxed constraints, the relaxed version
of Problem 1 is expressed below. Note, the discrete version
of this relaxed problem is an SoCP, which as discussed in the
introduction can be solved with numerically-efficient interior-
point methods that converge to within a desired accuracy in a
specified number of steps [3], [4], [5]. The same holds true
for a precision landing version of the relaxed problem.

Problem 2: (Relaxed Minimum-Fuel Guidance)

min
tf ,Tc(·),Γ(·)

∫ tf

0

Γ(t) dt

subject to the following dynamics and trajectory con-
straints, ∀t ∈ [0, tf ],

r̈(t) = −ω×ω×r − 2ω×ṙ + ḡ + Tc(t)/m(t),

ṁ(t) = −αΓ(t),

‖Tc(t)‖ ≤ Γ(t), n̂TTc(t) ≥ Γ(t) cos θ,

0 < ρ1 ≤ Γ(t) ≤ ρ2,

m(tf ) ≥ mdry, r(t) ∈ P, ‖ṙ(t)‖ ≤ Vmax,

and the following boundary conditions

m(0) = mwet, r(0) = r0, ṙ(0) = ṙ0,

eT1 r(tf ) = 0, STr(tf ) = q, ṙ(tf ) = 0,

Tc(tf ) = Γ(tf )n̂f ,

where set P and matrix S are defined in (2) and (3), respec-
tively, ḡ = g − ω×(ω×Rc), and parameters mwet, mdry,
α, ρ1, ρ2, n̂, Vmax, r0, ṙ0, q, n̂f are constant.

The solution to the relaxed guidance algorithm in Problem 2
comes from the Pontryagin Maximum Principle, which max-
imizes the Hamiltonian of Problem 2. The Hamiltonian for
the relaxed problem is given by

H = R1(t)Γ(t) + R2(t)TTc(t) +R0(t), (9)

the details of which are discussed in [1], [2]. To remain valid
for the original guidance problem (Problem 1) the solution of
the relaxed problem (Problem 2) must not have feasible so-
lutions that violate the original problem. Of concern is the
relaxed thrust magnitude constraint in (6), which could al-
low for a thrust magnitude of zero, which clearly violates the
original thrust magnitude constraint in (4) since ρ1 > 0.

For the relaxed problem without the pointing constraint (8),
the theory developed in [1], [2] rigorously proved that so-
lutions to the relaxed problem were also valid solutions to
the original, non-convex algorithm. For optimal solutions to
Problem 2 with the relaxed pointing constraint, Γ∗(t) will
be strictly non-zero, as seen from constraint (7). Thus, the

relaxed attitude constraint (8) will ensure a non-zero Tc(t)
for θ ∈ [0◦, 90◦) ∪ (90◦, 180◦]; for θ = 90◦, Tc(t) will
also be non-zero, but further theoretical justification, outside
the scope of this paper, is required. Since Tc will be non-
zero, the maximization of H for relaxed Problem 2 will give
‖T ∗

c ‖ = Γ∗ from constraint (6), and the bounds on Γ in
(7) will ensure satisfaction of the original thrust magnitude
bounds in (4). Thus, an optimal solution of relaxed guid-
ance Problem 2 will also be an optimal solution of the original
guidance Problem 1.

3. SIMULATIONS OF CONVEX GUIDANCE
CAPABILITIES

Several example simulations for spacecraft performing pin-
point and precision landing were developed to highlight some
of the capabilities of the PDG algorithm. This section will
discuss these simulations.

The simulations used the following parameters:

g = [−3.71 0 0]T m/s2, (10)
ω = [0 0 7.09×10−5]T rad/s, (11)
Rc = [3396.2×103 0 0]T m, (12)

γgs = 5◦, (13)
mwet = 1900 kg, mdry = 1600 kg, (14)
ρ1 = 0.2Tmax, ρ2 = 0.8Tmax, (15)

Tmax = 21500 N, α = 5× 10−4 s/m, (16)
Tc(tf ) = ‖Tc(tf )‖n̂f , n̂f = [1 0 0]T , (17)

where Tmax is the maximum net-thrust magnitude of Tc, and
the thrust limits coincide with a throttle minimum and max-
imum of 20% and 80%, respectively. The values for r0, ṙ0,
and q vary between the different simulations and can be in-
ferred from the plots. Additionally, the speed constraint Vmax

and the attitude constraint θ vary between the different simu-
lations. Vector n̂f is specified to ensure the final thrust vector
points in the upright direction; the lander is upright at the end
of the guidance profile. The thrust pointing constraint dur-
ing the PDG profile is also constrained around this pointing
vector (i.e., n̂ = n̂f ).

The PDG algorithm design, as described in Section 2, explic-
itly enforces constraints on the thrust (minimum and maxi-
mum), available fuel, speed, attitude and glide slope (to avoid
surface impact). An example pinpoint landing simulation that
enforces all of these constraints is shown in Figure 4. The
time of flight from powered-descent ignition to pinpoint land-
ing is 35.4 seconds with a total fuel usage of 199 kg. As seen
in the figure, the constraint limits are drawn alongside the
PDG profiles.

The upper three plots in Figure 4 include mass, speed and
thrust-pointing profiles versus the flight time. For each of
these three plots, the PDG trajectory profile obeys the en-
forced constraint, including the new constraint on thrust
pointing angle. Since the pinpoint landing algorithm mini-
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Figure 4. Typical constraints on a powered-descent guidance profile: fuel, speed, attitude, glide-slope and throttle.

mizes fuel usage, the spacecraft mass at the end of the flight
time is well above the dry mass limit, indicating that excess
fuel was available for powered descent. This excess fuel
could be budgeted for final landing maneuvers required for
certain types of landers or to account for sensor uncertainty
that would require the final PDG target to be above the sur-
face, such that a terminal vertical-descent phase would con-
duct landing.

The bottom three plots in Figure 4 include the X-Y and X-Z
position trajectories and the thruster throttle level. The posi-
tion trajectories include the glideslope constraint (γgs = 5◦),
and the profiles are in the XYZ coordinates from Figure 2.
The throttle plot includes both the minimum and maximum
throttle limits alongside the throttle profile that comes from
the PDG guidance solution from the discretized version of
Problem 2. The throttle values are always within the bounds,
as expected.

As constraints are tightened, there is generally a change in
performance (Refer to Figure 5 and Table 1). For instance, in
a shallow pinpoint-landing scenario with an initial downward
velocity of 10 m/s and a lateral velocity of 40 m/s, the PDG al-
gorithm optimization without any attitude constraints would
choose a profile that initially thrusts towards the surface (at
125◦ to the local vertical); this profile minimizes flight time
and fuel. However, thrusting toward the surface can be con-
sidered risky or can exceed the field of view of terrain-relative
sensors. Since PDG is capable of applying general attitude
constraints, the downward thrust can be avoided but at a trade
off in guidance performance. As attitude constraints are tight-
ened to 90◦ and to 45◦, there is an increase in required fuel
and time of flight. This is illustrated by the data in Table 1
which shows a small fuel and flight-time impact from the 90◦

constraint but a much larger effect from the 45◦ constraint.

Table 1. Example case of varying attitude constraints and
the effect on performance

Attitude Required fuel (kg) Flight time (sec)
Unconstrained 190 45.5
90◦ Constraint 192 47.7
45◦ Constraint 200 53.1

In addition to the required fuel and time of flight, the ap-
proach trajectory and thrust profile must change so that the
attitude constraints are feasible. Figure 5 provides plots of
the attitude profile, throttle profile and surface trajectory (Y-
Z) for the three cases in Table 1. The increase in flight time
seen in the table is also visible in the throttle profile plot. No-
tice that all throttle constraints are satisfied for the three dif-
ferent attitude constraint profiles. The surface trajectory is
also significantly altered for the 45◦ attitude constraint and
requires the lander to overshoot the target and then turn back
toward it in order to satisfy the attitude constraint as well as
the dynamics and other constraints during powered descent.

As discussed in the introduction and with the PDG algorithm
overview, PDG can provide both pinpoint and precision land-
ing guidance profiles. For precision landing, PDG minimizes
the distance to the desired landing target given the fuel avail-
able. This is also known as fuel-limited targeting and was
developed in [2]. Figure 6 provides a surface-trajectory plot
for a precision landing case where initial ground velocity is in
a direction 60◦ from the target direction. The PDG guidance
profile minimizes the landing error with the available fuel and
simultaneously satisfies the state and control constraints.
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Figure 6. Precision landing with PDG minimizes the
landing error from the original target.

The divert required to reach the target in Figure 6 would be
in excess of 4 km. Although this target is infeasible for a
pinpoint landing with the particular example spacecraft, this
figure illustrates that the PDG precision landing capability is
able to minimize the landing error to the target. Additionally,
this figure illustrates the capability of PDG to provide large-
divert guidance profiles that avoid surface impact and satisfy
the thrust and other state constraints. This capability is further
highlighted by the three-dimensional landing trajectory and
ground track in Figure 7 that illustrates a pinpoint landing
case requiring a 3.2-km divert to reach the target, which is
within the capabilities or the example spacecraft.

The large-divert pinpoint landing in Figure 7 illustrates a fur-
ther capability of onboard PDG compared to heritage algo-
rithms. Heritage guidance methods generally make use of an-
alytic solutions to restricted powered-descent problems with
a low-order polynomial-based guidance trajectory [6], [7].
These methods work suitably around well-known operating
conditions and in environments, such as lunar, where dynam-
ics and descent conditions are much slower than those associ-
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Figure 7. The PDG algorithm enables large diverts in
highly-constrained Mars pinpoint landing problems.

ated with Mars landing. The polynomial guidance profiles are
parameterized such that they can be tailored to obey state and
control constraints around the operating region. This works
well for small diverts but can cause problems when larger di-
verts are required, the reason being that the polynomial guid-
ance profiles cannot guarantee state and control constraint
satisfaction far from the design point.

Figure 8 provides one example of a comparison between PDG
and a polynomial guidance scheme for a descent scenario
with thrust constraints and a position constraint to avoid sur-
face impact. In the figure, which is based on the work in
[8], the downrange divert capability from different powered-
descent ignition altitudes is compared between PDG and a
second-order Apollo guidance algorithm. The simulation is
for initial velocities of -50 m/s vertical and 20 m/s lateral,
with the example spacecraft having the following parame-
ters: mwet = 1308 kg, mdry = 1100 kg, Tmax = 16000 N,
and a minimum and maximum throttle of 15% and 95%, re-
spectively. The comparison clearly indicates that the PDG
algorithm has a significantly larger performance envelop for

6



pinpoint-landing diverts compared to the Apollo algorithm.
The polynomial guidance, despite having adequate fuel to
achieve the landing maneuvers, has no means of ensuring that
guidance profiles satisfy the thrust constraints and the posi-
tion constraints to avoid impacting the surface.

Figure 8. Envelope of target-relative initial positions from
which Apollo and PDG can reach the desired landing target
while satisfying all state and control constraints. PDG has a

much wider envelope of divert capability.

4. CONCLUSIONS

The capabilities and strength of the PDG algorithm for on-
board powered-descent guidance lies in the convexification
of the optimization problem that explicitly enforces state and
control constraints, including minimum and maximum thrust
and general pointing constraints. The formulation of PDG
ensures not only satisfaction of all the constraints but also
that a solution will be found if the guidance problem and de-
sired maneuvers are feasible for the spacecraft to perform.
The numerical efficiency of convex algorithms makes PDG
ideal for onboard implementation during Mars powered de-
scent where the system is significantly constrained and time
criticality and reliability dictate the need for rapid solutions
and convergence guarantees. Further, the ability for PDG
to provide large-divert guidance profiles while still ensuring
state and control constraint satisfaction greatly enhances the
overall landing capabilities for future Mars lander missions
that will require pinpoint and precision landing.
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