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Abstract—This paper considers finite-horizon optimal con- A. Overview and Problem Statement

trol for dynamic systems subject to additive Gaussian- Thi aper considers the oroblem of finite-horizon ro-
distributed stochastic disturbance and a chance constraint on IS pap siders p ni 1z

the system state defined on a non-convex feasible space. ThePust optimal control of dynamic systems under unbounded
chance constraint requires that the probability of constraint ~Gaussian-distributed uncertainty, with state and control con-
violation is below a user-specified risk bound. A great deal straints. We assume a discrete-time, continuous-state linear
of recent work has studied joint chance constraints, which  4ynamics model. Gaussian-distributed stochastic uncertainty

are defined on the a conjunction of linear state constraints. is a more natural model for exogenous disturbances such as
These constraints can handle convex feasible regions, but do 9

not extend readily to problems with non-convex state spaces, Wind gusts and turbulence[1], than the previously studied

such as path planning with obstacles. set-bounded models[2][3][4][5]. However, with stochastic
In this paper we extend our prior work on chance con- uncertainty, it is often impossible to guarantee that state

strained control in non-convex feasible regions to develop a new cqnstraints are satisfied, since there is typically a non-zero

algorithm that solves the chance constrained control problem e . : h
wi?h very little conservatism compared to prior approa(F:)hes. probability of having a disturbance that is large enough to

In order to address the non-convex chance constrained PUSh the state out of the feasible region.
optimization problem, we present two innovative ideas in this ~ An effective framework to address robustness with
paper. First, we develop a new bounding method to obtain a set stochastic uncertainty is optimization witbhance con-
of decomposed chance constraints that is a sufficient condition strzints Chance constraints require that the probability of

of the original chance constraint. The decomposition of the . . . . - .
chance constraint enables its efficient evaluation, as well as the ylolatlng the state constraints (i.e. the probability of failure)

application of the branch and bound method. However, the IS below a user-specified bound known as tiek bound

slow computation of the branch and bound algorithm prevents An example problem is to drive a car to an destination as
practical applications. This issue is addressed by our second fast as possible while limiting the probability of an accident
innovation called Fixed Risk Relaxation (FRR), which efficiently g 10~7. This framework allows users to trade conservatism

gives a tight lower bound to the convex chance-constrained . . :
optimization problem. Our empirical results show that the FRR against performance by choosing the risk bound. The more

typically makes branch and bound algorithm 10-20 times faster. "1SK th? user accepts, the better perf(?rmance th_e_y can expect.
In addition we show that the new algorithm is significantly less Previous work [6][7][8][9][10] studied a specific form of

conservative than the existing approach. chance constraint calledjaint chance constraintwhich is
defined on theonjunctionof linear state constraints. In other
|. INTRODUCTION words, a joint chance constraint requires that the probability

of satisfyingall state constraints is more than A, whereA

Notation: The following notation is used throughout this p ¢ i
is the risk bound. Below is an example of a joint chance

paper. . . : . ' )
x; : State vector at ¢'th time step (random variable) constraint defined on a conjunction of linear state constraints.
u; : Control input at ¢'th time step. N -
P hX<ag|>1-A 1
w; : Additive disturbance at ¢'th time step ! /\1 g =9 = @)
ie

(random variable) Hereh is a vector, and the superscriptmeans transposition.

— . : / : .. . . . .
z; := FE[z]: Nominal state at 'th time step A clear limitation of the formulation in (1) is that the
feasible state space needs to be convex, since a conjunction

0 0 _ 0 of linear state constraints defines a convex polytopic state
X = : U := : X = : . constraint. However, many real-world problems have a non-
xT ur_1 Tr convex state space. For example, the feasible region of a

vehicle path planning problem with obstacles is non-convex.
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as conjunctions. The formal definition of non-convex chance @Cm:
constraints is given in the next subsection. Cy,

Pr [((C{l} V C{g}) A C{g}) V 0{4}] >1-A (2)

whereCy,;, is the linear state constraint given by X < g;.
There are two difficulties in handling the non-convex
chance constraint. First, evaluating the chance constraint
requires the computation of an integral over a multi-variable
Gaussian distribution over a finite, non-convex region. This
cannot be carried out in closed form, and approximate tech-

niques such as sampling are time-consuming and introduceThe set of state constraing;, is definedrecursivelyby
approximation error. Second, even if this integral could behe following equation. It is either a linear state constraint, a
computed efficiently, its value is non-convex in the decisioonjunctive clause of state constraints, or a disjunctive clause
variables. This means that the resulting optimization problewf state constraints:

is, in general, intractable. A typical approach to dealing with hf;}X < 91y linear constraint
non-convex feasible spaces is the branch and bound metho Yy =4 A;Cpjy ©  conjunctive clause 9)
which decomposes a non-convex problem into a tree of v{ C . distunctive clause

convex problems. However the branch and bound method gt )

cannot be directly applied, since the non-convex chandéhere subscriptis asetof indexes. The root state constraint
constraint cannot be decomposed trivially into subproblem§/{¢} in (8) has an empty index, and the children clauses

In order to overcome these two difficulties, we propos®f C{;; have an additional index. For example, consider
a novel method to decompose the non-convex chance cdhe following non-convex chance constraint:
straint into a set of individual chance constraints, each _
which is defined on a univariate probability distribution.OI\Slr [((C{l’l’l} VCuaa) A Cuay) \/O{2}] =1-4- (19
Integrals over univariate probability distributions can pd he state constraints in the non-convex chance constraint in
evaluated accurately and efficiently, and the decomposition 6¥0) have the following structure.
the chance constraint enables the branch and bound algorithm Cioy = C1V Oy, Cr:=Cpy ACpag
to be applied to find the optimal solution.

While this approach is guaranteed to terminate in finite
time, branch and bound requires many subproblems to belntuitively, a set of state constraints can be represented
solved before the global optimum is found. Since in our casas a tree. The example state constraints in the non-convex
the convex subproblems are non-linear programs, this meagfzance constraint in (10) have the tree shown in Figure 1.
Fhat the overall computation' time can bg Iarge.. This problgra Non-convex Chance Constraints
is addressed by our innovation, called Fixed Risk Relaxation _ . i )
(FRR), which efficiently gives a tight lower bound to each This sub;chon desgrlbes two example path planning
convex chance-constrained optimization problem. The FREfOPIemS, in order to illustrate the need for non-convex
is typically a linear or quadratic program, which can bé&hance constraints. _ .
solved efficiently. Using the bound from FRR we can more 1) Obstacle Avoidance:When planning a path in an

effectively prune the search space of the branch and boufigvironment with an obstacle such as Fig. 2-Left, the non-
approach, and our empirical results show that this yields &1Vex feasible region is approximated by the disjunction

- : P linear constraints. The probability of penetrating into the
factor of 10-20 improvement in computation time. 0 o ’ .
P P obstacle should be limited to the given boufdat all time

B. Problem Statement steps within the planning horizoh < ¢+ < 7. In such a
The open-loop finite-horizon optimal control problem withcase the chance constraint contains a disjunction of linear
a non-convex chance constraint is formally stated as followspnstraints as follows:

8(2: thiy X < gy

1,1y T
—~ (g:],z‘, Ty X gy

BT T
CH.LH ‘h\’l‘l‘l\‘X < &y %‘1,2: . h(I,I,Z:X < 8,12

Fig. 1. The tree structure of the example chance constraint (10)

Caay=Cuiny VGO

where we assume that is a proper, convex function: T 4 .
min  J(X,U) 3) Pr| A \/ hinX < g{t,i}‘| >1-A (11)
U t=1i=1
st @1 = Ame + Bue +wy ) 2) Going Through a Region (Waypointy¥hen planning
Umin < Ut < Umax (5) a path that goes through a region such as Fig. 2-Right, the
wy ~ N(0,%,) (6) set of constraints only has to be satisfied at one time step
o ~ N (Z0, D) @) during the plan.nln.g horllzon. Thereforg, the_ corresponding
chance constraint is defined on the disjunction of the set of
Pr[Ciy] >21-A (®) linear constraints as follows:
forall t =0,1,---T. Eq.(8) is the general form of chance T 4
constraint that allows non-convex state constraints,@ng Pr \/ h{Tm}X < g{m}l >1-A (12)
represents a possible non-convex set of state constraints. t=14=1




Goal  trolsl. An alternative bounding approach is to use Boole’s
by oy X =g, inequality to split joint chance constraints oulT variables

X = 2,0, into N 'u.nivariat.e chance constraints, and o ensure that the
h o X=g probability of violation of each of these is at mo&tN,
ot <y whered is the specified maximum probability of failure. This
hyX=g,4 ¥V | approach was suggested by [8] and [17] for convex feasible
_-,'_"‘h{,,z>X=g“,2, “%’);ngm /( regions. Another bounding approach was proposed by [6],

which does not require that all uncertainty is Gaussian. In
o2 Left obstadl . Ridht: corthroudh b this work, the authors draw samples or ‘scenarios’ from the
I 2 ol sacke svoiance, Kont. gooush corstint 1 tfandom variables and ensrre that the constraints are satisfed
for all of the samples. The bound in the scenario approach
is stochastic, in the sense thais chosen to ensure that the
chance constraint is satisfied with probability- 3, where
g is small and chosen by the user. Bounding approaches
are, however, prone to excessive conservatism whereby the
fle probability of constraint violation is far lower than the
specified allowable level. Conservatism leads to excess cost
and can prevent the optimization from finding a feasible
D. Related Work solution at all.
Previous work proposed letting the risk of constraint

There is a significant body of work that solvesnvex violation be an explicit optimization parameter, rather than
joint chance constrained optimizations, many of which havgeing fixed. We refer to this approach &sk allocation
been proposed in the context of model predictive contr@isk allocation was introduced in [17] for chance constrained
(MPC). MPC is a closed-loop control approach that, at eadthear programming, and was applied to finite horizon opti-
time step, solves a finite-horizon optimal control problenmal control in [18], [10], [19]. [17] showed that for convex
from the current initial state, executes the first step in thpo|ytopic state constraints the problem can be solved as a
resulting optimal control sequence, and then resolves at tBghgle convex optimization problem, and in [19] we showed
next time step. We are not concerned with suebeding- that the resulting conservatism is very low.
horizonapproaches in the present paper, and to the authors'on the other hand, there are only two prior methods
knowledge, no results exist that guarantee the satisfactigg|[20] that handle non-convex chance-constrained optimiza-
of chance constraints for a closed-loop receding-horizofion, as far as the authors know. However, although the
scheme. For early results in this area, we refer the readeimpling based method [9] is theoretically applicable to
to [11]. However there are a number of results in the MP@ny chance-constraints including non-convex ones, its slow
literature that address tH@nite-horizonchance-constrained computation prevents its practical use. The other method [20]
optimal control problem. In the case of Gaussian uncertaintikes the individual risk bounds, and solves the resulting
distributions, linear system dynamics and convex feasiblgixed-integer linear programming. Although the approach
regions, [12] considered chance constraints on individug efficient, the fixed risk bounds introduces unnecessary
scalar values. The extension from scalar random variablegnservatism. In the present paper we introduce a new algo-
to joint random variables is essential if we wish to constraifithm that uses the risk allocation approach to avoid excessive
the probability of failure over the entire planning horizon.conservatism, while still allowing for efficient computation.
The work of [13], [14] considered chance constraints on
joint random variables, using the result of [15] to show/!- DECOMPOSITION OFGENERAL CHANCE CONSTRAINT
that the optimization resulting from the chance-constrained There are two difficulties to handle the chance constraint
finite-horizon control problem is convex, and can therefordefined by (8),(9). First, it is very hard to evaluate due
be solved effectively using standard nonlinear solvers. Thig the difficulty of computing an integral of multi-variable
approach is limited, however, by the need to evaluate thgrobability distribution over an arbitrary region. Second, the
multivariate Gaussian integrals in the constraint functiongranch and bound method, which is a standard approach to
These integrals are approximated through sampling, whi¢fon-convex optimization, cannot be directly applied, since
is time-consuming and leads to approximation errot. the chance constraint (8) is one single constraint that cannot

[16] used a conservative ellipsoidal set bounding approadie divided. Disjunctions (i.e. non-convexity) only appear
to ensure that the chance constraints are satisfied without fhside of the chance constraint.
need for the evaluation of multivariate Gaussian integrals. Our approach to address these two issues is to decompose
The key idea is to characterize a region around the state mezopnjunctive and disjunctive clauses of a chance constraint
that the state is guaranteed to be in with a certain probabilityto a set ofindividual chance constraintsvhich are defined
(the '99%’ region) and ensure that this deterministic set | . )

Note however, that the chance constraints are only guaranteed to hold in

Sati.Sﬁ_es the constraints. The approach of [16] exp”Cithnite-horizon (open loop) execution, rather than in receding horizon (closed
optimized over feedback laws as well as feedforward coneop).

3) General Path Planning ProblemTypically, a path
planning problem has both obstacles and waypoints, and t
resulting chance constraint has a complicated structure
conjunctive and disjunctive clauses.



on uni-variable probability distributions. In other words, wewhereC; is a linear state constraint, or a set of linear state
move the conjunctions and disjunctions out of probabilityconstraints.
The resulting set of individual chance constraints are a The following inequalities always hold:
sufficient condition of the original chance constraint.

We decompose the chance constraint (8)(9) recursively, v, Pr
one by one, from top to the bottom of the tree shown in '
Fig. 1. Different rules are used to decompose conjuncti
and disjunctive clauses.

N

Ve

i=1

> Pr[C] (19)

V‘Fherefore, (18) is implied by the following:

A. Decomposition of Conjunctive Clause: Risk Allocation \A}(Pr[(}} >1-4) (20)

In this subsection we consider a conjunctive clause of im1

chance constraints: Note that a chance constraint defined on a disjunction of state

constraints (18) is decomposed to a disjunction of chance
constraints defined on individual state constraints (20). All

the individual chance constraints in (20) has the same risk
where(; is a linear state constraint, or a set of linear statgound as the original chance constraint

constraints. Our approach is to obtain a decomposed form of
chance constraint that is a sufficient condition of (13) usin§- Recursive Decomposition for General Clause
the union bound or Boole’s inequality: We now show that the two decomposition rules can be
Pr[AU B] < Pr[A] + Pr[B]. (14) applied_ _recu!rsively to decompos.e a_general clause with
both disjunctive clauses and conjunctive clauses, resulting
Observe that, using the Boole’s inequality, the conjunctiveh chance constraints on individual state constraints only.
joint chance constraint (13) is implied by the followingFor example, the chance constraint in the example (10) is
conditions. decomposed to individual chance constraints as follows:

N

/\ (Pr[C’l] Z 1— 51) (15) PI‘ [((0{17171} V 0{171,2}) A C{l,g}) vV C{Q})] Z 1-— A
i=1 < Pr [(0{1’171} V 0{171,2}) A\ 0{1,2}] Z 1-A

Vi 6 > 0 (16) vV Pr [0{2}] >1-A

= {PI' [(0{1’171} V 0{1,172})] Z 1-— 61

N

Ac

i=1

Pr >1-A (13)

Yo o< A 17)
i=1 A Pr [0{172}] Z 1-— 52
Note that a chance constraint defined on a conjunction A Gi+d <A} Vo OPr[Cpp;]21-A
of state constraints (13) is decomposed to a conjunction < {(Pr[C1,13] > 1 =061 VPr[Ci 193] > 1—61)
of chance constraints defined on individual state constraints A PrlCuon]>1-68 A & +0 <A}

(15). Each chance constraint in (15) has its own risk bound
0;. EQ.(16) is necessary sin@dg are probabilities. Eq.(17)
says that the sum of; is upper-bounded by the original Note that this decomposition introduces conservatism due to
risk bound A. Past work [8] and [20] fixed); ---dx to  the difference between the left hand side and the right hand
arbitrary values, such a§, = A/N. We treat them as side of the inequalities (14) and (19). However, we claim
decision variables that are optimized along with that this suboptimality is much less than previous bounding
The optimization problem o#; --- 65 can be viewed as approaches, such as [8], [16], [20]. We showed empirically
a resource allocation problem; each chance constraint is alsat this is the case for convex constraints in [10] and [19].
signed resource (risk);, whose total amount is limited. The In Section V we show that this is also the case for general
goal of the optimization problem is to find the best allocatiomon-convex constraints.
of the resource; - - - 63 that minimizes the cost. Thus we
call 67 - - - 03 a “risk allocatiorf. Methods for optimizing the
risk allocation in the case of a single conjunctive clause were We solve the optimization problem (3)-(7) with the decom-
introduced in [10], [17], [19]. We extend this to handle arposed chance constraints. That is, instead of (10) we use the
arbitrary combination of conjunctive and disjunctive clausedecomposition in (21) to give:

\% PI‘[O{Q}] >1-A (22)

IIl. BRANCH AND BOUND ALGORITHM

in this paper.
bap {(PrlCriy] 21 =61 VPr[Clii 03] 2 1= 61)
B. Decomposition of Disjunctive Clause: Risk Selection A PrChgy)>1-38 A 6 40 <A}
In this subsection we consider a disjunctive clause of Vo PrlCipy]>1-A (22)

chance constraints: o S _
This is a non-convex optimization problem. Its optimal

>S1-A (18) solution is found by the following process. First, we find all
N possibleconjunctivecombinations of constraints by choosing

Pr




one set of constraints at each disjunction. In the example of (pr[cm]ngI E|pr[cu‘]‘z}]21,5])Apr[qI L1z1-6,
(22), we can find three conjunctive combinations as follows: né+8 <ATIPAC,121-A

.

-y

Pr[c{l,l,l}] >1—01 A PI‘[C{LQ}] >1—0 A0 +02 <A

R

Pr[Cri10y] 21 =01 APr[Cy o] > 1 =02 A 01+ 02 <A F;el[aged ]p;olble(;n
1] a231=170

PT[C{Q}] >1-A (23) 5 <a

A candidate solution is feasible for the original non-convex

chance constraint (10) if it is feasible fany of the con-

junctive combinations in (23). In [19] we showed that each Pr[Cy,121-0, Pr[C,,,]21-6  PiC,]>1-A

of the conjunctive combinations, in general, yields a set of Pi[C,,121-0, Pr{C,u,121-6

convex constraints. We therefore propose solving the original 846, <A 546 <A

non-convex optimization problem (3)-(7) by searching over
the conjunctive combinations, solving for each conjunctive 3 The search tree of the branch and bound alaorithm for the
combination a convex optimizatipn using the approach Qfegéon{posed non-convex chance constraints (22) 9
[19] and returning the best solution from all of the convex
optimizations. Since convex optimization problems can be
solved to global optimality using existing solvers, as longode evaluation requiresran-linear convex program to be
as the decomposition in Section Il does not introduce togolved. Solution time for a convex non-linear program is on
much conservatism, this approach will return solutions closge order of seconds for problems with 50 state constraints,
to the global optimum of the original non-convex chance conyhich means that computation time is a serious issue. In the
strained problem. The drawback of this approach is that noRext section we therefore propose an additional bounding
convex problems often have large numbers of disjunctiongpproach that does not require solution of a non-linear
which lead to a large numbers of conjunctive combinationgrogram, and dramatically reduces computation times.
and hence many convex optimizations to be solved. This will
lead to large computation times. IV. FIXED RISK RELAXATION

To overcome this problem, we avoid having to solve a In this section we formulate a relaxed optimization prob-
convex program for every possible conjunctive combinatiolem, namely Fixed Risk Relaxation (FRR), to efficiently
using the branch and bound algorithm. Fig. 3 shows thebtain a lower bound of convex chance-constrained optimiza-
search tree used by the branch and bound algorithm ftion problems. FRR is used at both leaf nodes and branching
the example problem with the non-convex chance comodes; at the branching nodes, we solve the FRR of the
straint (22). The leaf nodes (represented by squares in Figlaxed problem described in the previous section, instead
3) represent all conjunctive combination of state constraintsf the relaxed problem itself.
while branching nodes (represented by circles) correspondThe FRR only has linear constraints. Therefore, when the
to disjunctions of the non-convex chance constraint. At eagdbjective function (3) is linear or quadratic, which is the
leaf node of the search tree, the algorithm solves a converse for many applications, the optimization problem with
joint chance constrained problem using the approach of [1HfRR are linear/quadratic programs, which can be solved
A relaxed problem is solved at each branching node igfficiently.
order to give the lower bound of all leaf nodes below th : o - .
branching node (see Fig. 3). The algorithm searches for the Linearization of Individual Chance Constraints
best solution in a depth-first manner, and if the solution of a The only non-linear constraints in the convex chance-
relaxed problem at a branching node is worse than the curreg@nstrained optimization problem are the individual chance
best solution, the branch is pruned. This process ensures tRapstraints, such as the ones in (22). Below is an individual
the globally optimal solution is found, and typically ensure@hance.constraint, which is defined on a single linear state
that a small subset of the nodes are evaluated. constraint:

We propose a bounding approagh whereby the relaxed Pr[hiTX <gl>1-4
problems are constructed by removing all constraints below
the corresponding disjunction. This approach was used Byhe individual chance constraint, which is defined on a
[21] and [22] for a different problem known as disjunctiverandom variableX, is equivalent to deterministic constraints
linear programming. For example, the relaxed problem at théefined on the nominal stat¥ as follows[23]:
middle left node in Fig. 3 is constructed by removing the first T%
two constraintsPr[Cy; 1 13] > 1 — 01 and Pr[Cyy ;93] > hi X < g = mi(0:) (24)
1 —4;. The resulting relaxed problems are also convex joinvhere —m,(-) is the inverse of cumulative distribution
chance constrained optimization problems. In this paper wanction of univariable Gaussian distribution with variance
use this approach to perform bounding, and present resuhgthi. Note the negative sign.

in Section V. The drawback of this bounding approach is
that, while the number of nodes evaluated is reduced, each mi(0;) = —\/2h] Sxh; erf 71(26; — 1) (25)



where erf! is the inverse of the Gauss error function and

Y x is the covariance matrix oX . 1 0 At 0

The deterministic form of chance constraint (24) is non- 01 0 At
linear due to the inverse cumulative distribution function A= 0 0 1
—m;(+). Our idea is to turn these non-linear constraints into 00 0 1
linear constraints by fixing;, and hence, making:;(J;) a At?/2m 0
constant. 0 At?/2m

B =

B. Fixed Risk Relaxation At/m 0

The fixed risk relaxation (FRR) of a chance-constrained Af =05 mO_ 1 Atfm
optimization problem is obtained by fixing all individual risk IR
boundss; to the original risk bound\: Umin = [—0.5, —0.5] , tmax = [0.5,0.5]

v, 6 =A (26) Wt .is sampled from a zero-mean Gaussian distribution with
variance.

Lemma 1: The optimization problem (3)-(7) with the Fixed 105 0 0 0
Risk Relaxation gives a lower bound on the cost of the 0 1075 0 0
original convex chance-constrained optimization problem. Y = 0 0 0 0

Proof: It immediately follows from (16) and (17) that 0 0 00
V; 6; < A. Sincem;(-) is a monotonically increasing func- The cost is the total control input during the planning horizon
tion, all individual chance constraints (24) of the Fixed Risk <t < T~

Relaxation are looser than the original problem. Therefore, T
the cost of the optimal solution of the Fixed Risk Relaxation J(X,U) = Z (luz] + |uyl) -
is less than or equal to the original problem. ] t=1

Note that the solution of the optimization problem withB. Results
FRR is an infeasible solution to the original problem, since Fig. 4 shows the solutions given by the proposed al-
(26) violates the constraint (17). In a special case where theggithm. The circles represent three standard deviations of

is only one individual chance constraint, such as the relaxgfle gistribution of vehicle locations, while the plus marks
problem in Fig. 3, the Fixed Risk Relaxation is equwalenEq_,) represent the nominal location at each time step. The

to the original problem. resulting probabilities of constraint violation in the examples
C. Using FRR in Branch and Bound Algorithm are 1 — Pr [Cyyy] = 0.000938 for the Obstacle Avoid-
i _ance problem, an@.000991 for the Go-Through-Waypoints

By using the FRR, the Branch and Bound algorithmyoniem, both of which satisfy the given chance constraint

can be substantially sped up. In each node of the Brangh p. [C{¢}] < 0.001. These results show that our proposed

and Bound algorithm, the FRR is solved first. If the lower,qthog successfully guides the vehicle to the goal while

bound given by the FRR is more than the incumbent, th@gnecting the chance constraint in both problems. In Fig.
node is pruned without solving the original convex chances_to, it appears that the path cuts across the obstacle.
constrained optimization; otherwise, the node is expandegis is due to the discretization of the plant dynamics: the
at the branching nodes, and the original convex chanCgyimization problem only requires that the vehicle locations
constrained optimization is solved at the leaf nodes. at each discrete time step satisfies the constraints, and does
V. SIMULATIONS not care about the ste_lte _in betyveen. This issue can be
. addressed by a constraint tightening method[24].
A. Problem Settings Table | compares the performance of three algorithms
We tested our methods on two 2-D path planningn the Obstacle Avoidance problems and the Go-Through-
problems: Obstacle Avoidance problem, and Go-Through¥aypoints problem. The three algorithms are Branch and
Waypoints problem. Fig. 4 shows the example results of tHedound with optimized risk allocation and Fixed Risk Re-
Obstacle Avoidance and the Go-Through-Waypoints problaxation (FRR) (the proposed algorithm), the Branch and
lem. A vehicle starts fronf0, 0], and heads to the rectangularBound with optimized risk allocation but without the FRR,
goal region with its center 4t.05, 1.05] and the edge length and our previous method [20] that uses a fixed risk allo-
0.1. In the Obstacle Avoidance problem, a rectangular obstaation. Although [20] only deals with obstacle avoidance
cle with its edge length 0.6 is placed at a random locatioproblems, we have extended the approach here to Go-
within the square region with its corners ft 0], [1,0], Through-Waypoints problems in order to be compared with
[1,1], and]0, 1]. In the Go-Through-Waypoint problem, two the algorithm proposed in the present paper. The values
rectangular waypoints (regions) with their edge length 0.1 aia the table are the averages of 20 runs with random
placed at random locations within the same square regiolecations for the obstacle and waypoints. The probability of
The risk bound is set t&\ = 0.001 for both problems. The constraint violation { — Pr [C{¢}]) is evaluated by Monte-
following discrete-time dynamics model is used. Carlo simulation with10% samples.



results show that the FRR significantly enhances the com-
| Goa|@ putation speed of the Branch and Bound algorithm in both
problems. As shown in Table I, although the algorithm with
08l Obstacle & FRR always results in the exactly same solution as the one
without FRR, its computation is 10-20 times faster. Note
05 that the advantage of FRR is smaller on the Go-Through-
> Waypoints problem than on the Obstacle Avoidance problem.
This is due to the shallow depth of the search tree. Typically,
the advantage of using FRR is more significant in a problem
@ with deep search tree such as the obstacle avoidance problem.
Since a problem with a deep search tree typically requires
N N ‘ ‘ larger computation time, it can be said that the advantage of
0 02 04 06 08 ! using FRR is more significant in difficult problems.

Goal [ ) TABLE |

COMPARISON OF COMPUTATION TIME PROBABILITY OF CONSTRAINT
@ VIOLATION, AND COST OF THREE ALGORITHMS THE VALUES ARE THE

AVERAGES OF20 RUNS WITH RANDOM LOCATION OF OBSTACLE AND

WAYPOINTS. THE SECOND ROW SHOWS THE RESULTING PROBABILITY
> 08¢ @ OF CONSTRAINT VIOLATION. THE RISK BOUND IS SET TOA = 0.001.

S
04r © — i i i i
@ / Optimized risk allocation| Fixed risk

04 r

02+

081

o . W/ FRR ] w/o FRR allocation
02, Waypoints Obstacle Avoidance problem
Comp. time [sec][ 35.97 ]| 875.38 2.56
of ‘ ‘ ‘ ‘ ‘ PCV* 9.975 x 10 % 2.829 x 10 %
0 02 04 X0'6 08 1 Cost 0.352 0.357
Go-Through-Waypoints problem
Comp. time [sec][ 25.53 ]| 283.32 0.656
Fig. 4. Example simulation results. Top: Obstacle Avoidance problem, Bot- PCV* 9.784 x 10~ % 4.061 x 10— %
tom: Go-Through-Waypoints problem. The circles represent three standard Cost 0.576 0.585
deviations of the distribution of vehicle locations. *PCV = Probability of constraint violation
a) Conservatism:As discussed in Section I, satisfac- VI]. CONCLUSION

tion of the decomposed chance constraints is a sufficient , o
condition for satisfaction of the original chance constraint W& Proposed two innovative ideas to solve non-convex

(8). Conservatism is introduced by the difference betweef@nce constrained optimization problem efficiently with
the two sides of the inequalities (14) and (19). small suboptimality. The first is the recursive decomposition
The results show that the conservatism of our proposéﬁChnique of a chance constraint (Section II), which enables

method is significantly smaller than the fixed risk allocatior|:s effrl]uené ivaluztlon, ;S | we:: as the dapph(r:]atlor_] 0(; th.ek
method. In almost all problems of interest, the chance corf@nch and bound method. The second is the Fixed Ris

straint is active. This means that when the solution is exactgelaxatlon (Section 1V), which makes the branch and bound

optimal, the probability of constraint violation— Pr [C, | gorithmh significantly faster by giving lOWTr boufr;.d.s tol
is equal to the risk bound., which is settaA — 0.001 inour ~ SONVeX ¢ ance-constrained optimization problems efficiently.

simulations. Table | shows that the probability of constrainghz_\gl'g:)gggd efficiency of our method was demonstrated
y simulations.

violation of our proposed algorithm is very close /0 On
the other hand, the fixed risk allocation method [20] has non-
negligible conservatism; its probability of constraint violation ) ) )
is less than the half of the given risk bound. This significant Thanks to Michael Kerstetter, Scott Smith and the Boeing
conservatism is due to the fixed individual risk bounds (riskcompany for their support.

allocation).

We cannot evaluate the suboptimality in terms of the cost
function, since the exactly optimal solution is unavailable.[] ';‘i-m '\i'j-l;grfféeDr-ﬂﬁf;?;?%?Igggir?- Fi'nicgaeféiﬂgﬁwﬁﬂa";i‘iefn 2°Lﬂi§’t'?2|
Nonetheless, we can observe in Table | that the proposed g giomo’ Baner FAARD 74206, 1974 9
approach results in a better cost than the fixed risk allocatiofp] E. C. Kerrigan, “Robust constraint satisfaction: Invariant sets and
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