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Abstract— This paper considers finite-horizon optimal con-
trol for dynamic systems subject to additive Gaussian-
distributed stochastic disturbance and a chance constraint on
the system state defined on a non-convex feasible space. The
chance constraint requires that the probability of constraint
violation is below a user-specified risk bound. A great deal
of recent work has studied joint chance constraints, which
are defined on the a conjunction of linear state constraints.
These constraints can handle convex feasible regions, but do
not extend readily to problems with non-convex state spaces,
such as path planning with obstacles.

In this paper we extend our prior work on chance con-
strained control in non-convex feasible regions to develop a new
algorithm that solves the chance constrained control problem
with very little conservatism compared to prior approaches.

In order to address the non-convex chance constrained
optimization problem, we present two innovative ideas in this
paper. First, we develop a new bounding method to obtain a set
of decomposed chance constraints that is a sufficient condition
of the original chance constraint. The decomposition of the
chance constraint enables its efficient evaluation, as well as the
application of the branch and bound method. However, the
slow computation of the branch and bound algorithm prevents
practical applications. This issue is addressed by our second
innovation called Fixed Risk Relaxation (FRR), which efficiently
gives a tight lower bound to the convex chance-constrained
optimization problem. Our empirical results show that the FRR
typically makes branch and bound algorithm 10-20 times faster.
In addition we show that the new algorithm is significantly less
conservative than the existing approach.

I. I NTRODUCTION

Notation: The following notation is used throughout this
paper.
xt : State vector at t′th time step (random variable)
ut : Control input at t′th time step.

wt : Additive disturbance at t′th time step
(random variable)

x̄t := E[xt] : Nominal state at t′th time step

X :=

 x0

...
xT

 U :=

 u0

...
uT−1

 X̄ :=

 x̄0

...
x̄T

 .
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A. Overview and Problem Statement

This paper considers the problem of finite-horizon ro-
bust optimal control of dynamic systems under unbounded
Gaussian-distributed uncertainty, with state and control con-
straints. We assume a discrete-time, continuous-state linear
dynamics model. Gaussian-distributed stochastic uncertainty
is a more natural model for exogenous disturbances such as
wind gusts and turbulence[1], than the previously studied
set-bounded models[2][3][4][5]. However, with stochastic
uncertainty, it is often impossible to guarantee that state
constraints are satisfied, since there is typically a non-zero
probability of having a disturbance that is large enough to
push the state out of the feasible region.

An effective framework to address robustness with
stochastic uncertainty is optimization withchance con-
straints. Chance constraints require that the probability of
violating the state constraints (i.e. the probability of failure)
is below a user-specified bound known as therisk bound.
An example problem is to drive a car to an destination as
fast as possible while limiting the probability of an accident
to 10−7. This framework allows users to trade conservatism
against performance by choosing the risk bound. The more
risk the user accepts, the better performance they can expect.

Previous work [6][7][8][9][10] studied a specific form of
chance constraint called ajoint chance constraint, which is
defined on theconjunctionof linear state constraints. In other
words, a joint chance constraint requires that the probability
of satisfyingall state constraints is more than1−∆, where∆
is the risk bound. Below is an example of a joint chance
constraint defined on a conjunction of linear state constraints.

Pr

[
N∧

i=1

hT
i X ≤ gi

]
≥ 1 − ∆ (1)

Hereh is a vector, and the superscriptT means transposition.
A clear limitation of the formulation in (1) is that the

feasible state space needs to be convex, since a conjunction
of linear state constraints defines a convex polytopic state
constraint. However, many real-world problems have a non-
convex state space. For example, the feasible region of a
vehicle path planning problem with obstacles is non-convex.
Another example is when a vehicle has to choose at which
time step to pass through a particular region.

The objective of this paper is to solve an optimization
problem with chance constraints defined over non-convex
feasible regions, instead of the convex joint chance constraint
in (1). An example of such a non-convex chance constraint
is given in (2). Note that it contains disjunctions as well



as conjunctions. The formal definition of non-convex chance
constraints is given in the next subsection.

Pr
[
((C{1} ∨ C{2}) ∧ C{3}) ∨ C{4}

]
≥ 1 − ∆ (2)

whereC{i} is the linear state constraint given byhT
i X ≤ gi.

There are two difficulties in handling the non-convex
chance constraint. First, evaluating the chance constraint
requires the computation of an integral over a multi-variable
Gaussian distribution over a finite, non-convex region. This
cannot be carried out in closed form, and approximate tech-
niques such as sampling are time-consuming and introduce
approximation error. Second, even if this integral could be
computed efficiently, its value is non-convex in the decision
variables. This means that the resulting optimization problem
is, in general, intractable. A typical approach to dealing with
non-convex feasible spaces is the branch and bound method,
which decomposes a non-convex problem into a tree of
convex problems. However the branch and bound method
cannot be directly applied, since the non-convex chance
constraint cannot be decomposed trivially into subproblems.

In order to overcome these two difficulties, we propose
a novel method to decompose the non-convex chance con-
straint into a set of individual chance constraints, each of
which is defined on a univariate probability distribution.
Integrals over univariate probability distributions can be
evaluated accurately and efficiently, and the decomposition of
the chance constraint enables the branch and bound algorithm
to be applied to find the optimal solution.

While this approach is guaranteed to terminate in finite
time, branch and bound requires many subproblems to be
solved before the global optimum is found. Since in our case
the convex subproblems are non-linear programs, this means
that the overall computation time can be large. This problem
is addressed by our innovation, called Fixed Risk Relaxation
(FRR), which efficiently gives a tight lower bound to each
convex chance-constrained optimization problem. The FRR
is typically a linear or quadratic program, which can be
solved efficiently. Using the bound from FRR we can more
effectively prune the search space of the branch and bound
approach, and our empirical results show that this yields a
factor of 10-20 improvement in computation time.

B. Problem Statement

The open-loop finite-horizon optimal control problem with
a non-convex chance constraint is formally stated as follows,
where we assume thatJ is a proper, convex function:

min
U

J(X̄, U) (3)

s.t. xt+1 = Axt + But + wt (4)

umin ≤ ut ≤ umax (5)

wt ∼ N (0, Σw) (6)

x0 ∼ N (x̄0,Σx,0) (7)

Pr
[
C{φ}

]
≥ 1 − ∆ (8)

for all t = 0, 1, · · ·T . Eq.(8) is the general form of chance
constraint that allows non-convex state constraints, andC{φ}
represents a possible non-convex set of state constraints.
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Fig. 1. The tree structure of the example chance constraint (10)

The set of state constraintsC{i} is definedrecursivelyby
the following equation. It is either a linear state constraint, a
conjunctive clause of state constraints, or a disjunctive clause
of state constraints:

C{i} :=


hT
{i}X ≤ g{i} : linear constraint∧
j C{i,j} : conjunctive clause∨
j C{i,j} : disjunctive clause

(9)

where subscripti is asetof indexes. The root state constraint
C{φ} in (8) has an empty indexφ, and the children clauses
of C{i} have an additional indexj. For example, consider
the following non-convex chance constraint:

Pr
[
((C{1,1,1} ∨ C{1,1,2}) ∧ C{1,2}) ∨ C{2}

]
≥ 1 − ∆. (10)

The state constraints in the non-convex chance constraint in
(10) have the following structure.

C{φ} := C1 ∨ C2, C1 := C{1,1} ∧ C{1,2}

C{1,1} := C{1,1,1} ∨ C{1,1,2}

Intuitively, a set of state constraints can be represented
as a tree. The example state constraints in the non-convex
chance constraint in (10) have the tree shown in Figure 1.

C. Non-convex Chance Constraints

This subsection describes two example path planning
problems, in order to illustrate the need for non-convex
chance constraints.

1) Obstacle Avoidance:When planning a path in an
environment with an obstacle such as Fig. 2-Left, the non-
convex feasible region is approximated by the disjunction
of linear constraints. The probability of penetrating into the
obstacle should be limited to the given bound∆ at all time
steps within the planning horizon1 ≤ t ≤ T . In such a
case the chance constraint contains a disjunction of linear
constraints as follows:

Pr

[
T∧

t=1

4∨
i=1

hT
{t,i}X ≤ g{t,i}

]
≥ 1 − ∆ (11)

2) Going Through a Region (Waypoint):When planning
a path that goes through a region such as Fig. 2-Right, the
set of constraints only has to be satisfied at one time step
during the planning horizon. Therefore, the corresponding
chance constraint is defined on the disjunction of the set of
linear constraints as follows:

Pr

[
T∨

t=1

4∧
i=1

hT
{t,i}X ≤ g{t,i}

]
≥ 1 − ∆ (12)
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Fig. 2. Left: obstacle avoidance, Right: go-through constraint. In both
cases, the chance constraint has disjunctive clauses of linear constraints.

3) General Path Planning Problem:Typically, a path
planning problem has both obstacles and waypoints, and the
resulting chance constraint has a complicated structure of
conjunctive and disjunctive clauses.

D. Related Work

There is a significant body of work that solvesconvex
joint chance constrained optimizations, many of which have
been proposed in the context of model predictive control
(MPC). MPC is a closed-loop control approach that, at each
time step, solves a finite-horizon optimal control problem
from the current initial state, executes the first step in the
resulting optimal control sequence, and then resolves at the
next time step. We are not concerned with suchreceding-
horizonapproaches in the present paper, and to the authors’
knowledge, no results exist that guarantee the satisfaction
of chance constraints for a closed-loop receding-horizon
scheme. For early results in this area, we refer the reader
to [11]. However there are a number of results in the MPC
literature that address thefinite-horizonchance-constrained
optimal control problem. In the case of Gaussian uncertainty
distributions, linear system dynamics and convex feasible
regions, [12] considered chance constraints on individual
scalar values. The extension from scalar random variables
to joint random variables is essential if we wish to constrain
the probability of failure over the entire planning horizon.
The work of [13], [14] considered chance constraints on
joint random variables, using the result of [15] to show
that the optimization resulting from the chance-constrained
finite-horizon control problem is convex, and can therefore
be solved effectively using standard nonlinear solvers. This
approach is limited, however, by the need to evaluate the
multivariate Gaussian integrals in the constraint functions.
These integrals are approximated through sampling, which
is time-consuming and leads to approximation error.

[16] used a conservative ellipsoidal set bounding approach
to ensure that the chance constraints are satisfied without the
need for the evaluation of multivariate Gaussian integrals.
The key idea is to characterize a region around the state mean
that the state is guaranteed to be in with a certain probability
(the ‘99%’ region) and ensure that this deterministic set
satisfies the constraints. The approach of [16] explicitly
optimized over feedback laws as well as feedforward con-

trols1. An alternative bounding approach is to use Boole’s
inequality to split joint chance constraints overN variables
into N univariate chance constraints, and to ensure that the
probability of violation of each of these is at mostδ/N ,
whereδ is the specified maximum probability of failure. This
approach was suggested by [8] and [17] for convex feasible
regions. Another bounding approach was proposed by [6],
which does not require that all uncertainty is Gaussian. In
this work, the authors drawn samples or ‘scenarios’ from the
random variables and ensure that the constraints are satisfied
for all of the samples. The bound in the scenario approach
is stochastic, in the sense thatn is chosen to ensure that the
chance constraint is satisfied with probability1 − β, where
β is small and chosen by the user. Bounding approaches
are, however, prone to excessive conservatism whereby the
true probability of constraint violation is far lower than the
specified allowable level. Conservatism leads to excess cost
and can prevent the optimization from finding a feasible
solution at all.

Previous work proposed letting the risk of constraint
violation be an explicit optimization parameter, rather than
being fixed. We refer to this approach asrisk allocation.
Risk allocation was introduced in [17] for chance constrained
linear programming, and was applied to finite horizon opti-
mal control in [18], [10], [19]. [17] showed that for convex
polytopic state constraints the problem can be solved as a
single convex optimization problem, and in [19] we showed
that the resulting conservatism is very low.

On the other hand, there are only two prior methods
[9][20] that handle non-convex chance-constrained optimiza-
tion, as far as the authors know. However, although the
sampling based method [9] is theoretically applicable to
any chance-constraints including non-convex ones, its slow
computation prevents its practical use. The other method [20]
fixes the individual risk bounds, and solves the resulting
mixed-integer linear programming. Although the approach
is efficient, the fixed risk bounds introduces unnecessary
conservatism. In the present paper we introduce a new algo-
rithm that uses the risk allocation approach to avoid excessive
conservatism, while still allowing for efficient computation.

II. D ECOMPOSITION OFGENERAL CHANCE CONSTRAINT

There are two difficulties to handle the chance constraint
defined by (8),(9). First, it is very hard to evaluate due
to the difficulty of computing an integral of multi-variable
probability distribution over an arbitrary region. Second, the
branch and bound method, which is a standard approach to
non-convex optimization, cannot be directly applied, since
the chance constraint (8) is one single constraint that cannot
be divided. Disjunctions (i.e. non-convexity) only appear
inside of the chance constraint.

Our approach to address these two issues is to decompose
conjunctive and disjunctive clauses of a chance constraint
into a set ofindividual chance constraints, which are defined

1Note however, that the chance constraints are only guaranteed to hold in
finite-horizon (open loop) execution, rather than in receding horizon (closed
loop).



on uni-variable probability distributions. In other words, we
move the conjunctions and disjunctions out of probability.
The resulting set of individual chance constraints are a
sufficient condition of the original chance constraint.

We decompose the chance constraint (8)(9) recursively,
one by one, from top to the bottom of the tree shown in
Fig. 1. Different rules are used to decompose conjunctive
and disjunctive clauses.

A. Decomposition of Conjunctive Clause: Risk Allocation

In this subsection we consider a conjunctive clause of
chance constraints:

Pr

[
N∧

i=1

Ci

]
≥ 1 − ∆ (13)

whereCi is a linear state constraint, or a set of linear state
constraints. Our approach is to obtain a decomposed form of
chance constraint that is a sufficient condition of (13) using
the union bound or Boole’s inequality:

Pr[A ∪ B] ≤ Pr[A] + Pr[B]. (14)

Observe that, using the Boole’s inequality, the conjunctive
joint chance constraint (13) is implied by the following
conditions.

N∧
i=1

(Pr[Ci] ≥ 1 − δi) (15)

∀i δi ≥ 0 (16)
N∑

i=1

δi ≤ ∆ (17)

Note that a chance constraint defined on a conjunction
of state constraints (13) is decomposed to a conjunction
of chance constraints defined on individual state constraints
(15). Each chance constraint in (15) has its own risk bound
δi. Eq.(16) is necessary sinceδi are probabilities. Eq.(17)
says that the sum ofδi is upper-bounded by the original
risk bound ∆. Past work [8] and [20] fixedδ1 · · · δN to
arbitrary values, such asδi = ∆/N . We treat them as
decision variables that are optimized along withU .

The optimization problem ofδ1 · · · δN can be viewed as
a resource allocation problem; each chance constraint is as-
signed resource (risk)δi, whose total amount is limited. The
goal of the optimization problem is to find the best allocation
of the resourceδ?

1 · · · δ?
N that minimizes the cost. Thus we

call δ?
1 · · · δ?

N a “risk allocation”. Methods for optimizing the
risk allocation in the case of a single conjunctive clause were
introduced in [10], [17], [19]. We extend this to handle an
arbitrary combination of conjunctive and disjunctive clauses
in this paper.

B. Decomposition of Disjunctive Clause: Risk Selection

In this subsection we consider a disjunctive clause of
chance constraints:

Pr

[
N∨

i=1

Ci

]
≥ 1 − ∆ (18)

whereCi is a linear state constraint, or a set of linear state
constraints.

The following inequalities always hold:

∀i Pr

[
N∨

i=1

Ci

]
≥ Pr [Ci] (19)

Therefore, (18) is implied by the following:

N∨
i=1

(Pr[Ci] ≥ 1 − ∆) (20)

Note that a chance constraint defined on a disjunction of state
constraints (18) is decomposed to a disjunction of chance
constraints defined on individual state constraints (20). All
the individual chance constraints in (20) has the same risk
bound as the original chance constraint∆.

C. Recursive Decomposition for General Clause

We now show that the two decomposition rules can be
applied recursively to decompose a general clause with
both disjunctive clauses and conjunctive clauses, resulting
in chance constraints on individual state constraints only.
For example, the chance constraint in the example (10) is
decomposed to individual chance constraints as follows:

Pr
[
((C{1,1,1} ∨ C{1,1,2}) ∧ C{1,2}) ∨ C{2})

]
≥ 1 − ∆

⇐ Pr
[
(C{1,1,1} ∨ C{1,1,2}) ∧ C{1,2}

]
≥ 1 − ∆

∨ Pr
[
C{2}

]
≥ 1 − ∆

⇐ {Pr
[
(C{1,1,1} ∨ C{1,1,2})

]
≥ 1 − δ1

∧ Pr
[
C{1,2}

]
≥ 1 − δ2

∧ δ1 + δ2 ≤ ∆} ∨ Pr
[
C{2}

]
≥ 1 − ∆

⇐ {(Pr[C{1,1,1}] ≥ 1 − δ1 ∨ Pr[C{1,1,2}] ≥ 1 − δ1)
∧ Pr[C{1,2}] ≥ 1 − δ2 ∧ δ1 + δ2 ≤ ∆}
∨ Pr[C{2}] ≥ 1 − ∆ (21)

Note that this decomposition introduces conservatism due to
the difference between the left hand side and the right hand
side of the inequalities (14) and (19). However, we claim
that this suboptimality is much less than previous bounding
approaches, such as [8], [16], [20]. We showed empirically
that this is the case for convex constraints in [10] and [19].
In Section V we show that this is also the case for general
non-convex constraints.

III. B RANCH AND BOUND ALGORITHM

We solve the optimization problem (3)-(7) with the decom-
posed chance constraints. That is, instead of (10) we use the
decomposition in (21) to give:

{(Pr[C{1,1,1}] ≥ 1 − δ1 ∨ Pr[C{1,1,2}] ≥ 1 − δ1)
∧ Pr[C{1,2}] ≥ 1 − δ2 ∧ δ1 + δ2 ≤ ∆}

∨ Pr[C{2}] ≥ 1 − ∆ (22)

This is a non-convex optimization problem. Its optimal
solution is found by the following process. First, we find all
possibleconjunctivecombinations of constraints by choosing



one set of constraints at each disjunction. In the example of
(22), we can find three conjunctive combinations as follows:

Pr[C{1,1,1}] ≥ 1 − δ1 ∧ Pr[C{1,2}] ≥ 1 − δ2 ∧ δ1 + δ2 ≤ ∆
Pr[C{1,1,2}] ≥ 1 − δ1 ∧ Pr[C{1,2}] ≥ 1 − δ2 ∧ δ1 + δ2 ≤ ∆
Pr[C{2}] ≥ 1 − ∆ (23)

A candidate solution is feasible for the original non-convex
chance constraint (10) if it is feasible forany of the con-
junctive combinations in (23). In [19] we showed that each
of the conjunctive combinations, in general, yields a set of
convex constraints. We therefore propose solving the original
non-convex optimization problem (3)-(7) by searching over
the conjunctive combinations, solving for each conjunctive
combination a convex optimization using the approach of
[19] and returning the best solution from all of the convex
optimizations. Since convex optimization problems can be
solved to global optimality using existing solvers, as long
as the decomposition in Section II does not introduce too
much conservatism, this approach will return solutions close
to the global optimum of the original non-convex chance con-
strained problem. The drawback of this approach is that non-
convex problems often have large numbers of disjunctions,
which lead to a large numbers of conjunctive combinations
and hence many convex optimizations to be solved. This will
lead to large computation times.

To overcome this problem, we avoid having to solve a
convex program for every possible conjunctive combination
using the branch and bound algorithm. Fig. 3 shows the
search tree used by the branch and bound algorithm for
the example problem with the non-convex chance con-
straint (22). The leaf nodes (represented by squares in Fig.
3) represent all conjunctive combination of state constraints,
while branching nodes (represented by circles) correspond
to disjunctions of the non-convex chance constraint. At each
leaf node of the search tree, the algorithm solves a convex
joint chance constrained problem using the approach of [19].
A relaxed problem is solved at each branching node in
order to give the lower bound of all leaf nodes below the
branching node (see Fig. 3). The algorithm searches for the
best solution in a depth-first manner, and if the solution of a
relaxed problem at a branching node is worse than the current
best solution, the branch is pruned. This process ensures that
the globally optimal solution is found, and typically ensures
that a small subset of the nodes are evaluated.

We propose a bounding approach whereby the relaxed
problems are constructed by removing all constraints below
the corresponding disjunction. This approach was used by
[21] and [22] for a different problem known as disjunctive
linear programming. For example, the relaxed problem at the
middle left node in Fig. 3 is constructed by removing the first
two constraintsPr[C{1,1,1}] ≥ 1 − δ1 and Pr[C{1,1,2}] ≥
1− δ1. The resulting relaxed problems are also convex joint
chance constrained optimization problems. In this paper we
use this approach to perform bounding, and present results
in Section V. The drawback of this bounding approach is
that, while the number of nodes evaluated is reduced, each
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Fig. 3. The search tree of the branch and bound algorithm for the
decomposed non-convex chance constraints (22)

node evaluation requires anon-linearconvex program to be
solved. Solution time for a convex non-linear program is on
the order of seconds for problems with 50 state constraints,
which means that computation time is a serious issue. In the
next section we therefore propose an additional bounding
approach that does not require solution of a non-linear
program, and dramatically reduces computation times.

IV. F IXED RISK RELAXATION

In this section we formulate a relaxed optimization prob-
lem, namely Fixed Risk Relaxation (FRR), to efficiently
obtain a lower bound of convex chance-constrained optimiza-
tion problems. FRR is used at both leaf nodes and branching
nodes; at the branching nodes, we solve the FRR of the
relaxed problem described in the previous section, instead
of the relaxed problem itself.

The FRR only has linear constraints. Therefore, when the
objective function (3) is linear or quadratic, which is the
case for many applications, the optimization problem with
FRR are linear/quadratic programs, which can be solved
efficiently.

A. Linearization of Individual Chance Constraints

The only non-linear constraints in the convex chance-
constrained optimization problem are the individual chance
constraints, such as the ones in (22). Below is an individual
chance constraint, which is defined on a single linear state
constraint:

Pr[hT
i X ≤ gi] ≥ 1 − δi

The individual chance constraint, which is defined on a
random variableX, is equivalent to deterministic constraints
defined on the nominal statēX as follows[23]:

hT
i X̄ ≤ gi − mi(δi) (24)

where −mi(·) is the inverse of cumulative distribution
function of univariable Gaussian distribution with variance
hT

i ΣXhi. Note the negative sign.

mi(δi) = −
√

2hT
i ΣXhi erf−1(2δi − 1) (25)



where erf−1 is the inverse of the Gauss error function and
ΣX is the covariance matrix ofX.

The deterministic form of chance constraint (24) is non-
linear due to the inverse cumulative distribution function
−mi(·). Our idea is to turn these non-linear constraints into
linear constraints by fixingδi, and hence, makingmi(δi) a
constant.

B. Fixed Risk Relaxation

The fixed risk relaxation (FRR) of a chance-constrained
optimization problem is obtained by fixing all individual risk
boundsδi to the original risk bound∆:

∀i δi = ∆ (26)

Lemma 1: The optimization problem (3)-(7) with the Fixed
Risk Relaxation gives a lower bound on the cost of the
original convex chance-constrained optimization problem.

Proof: It immediately follows from (16) and (17) that
∀i δi ≤ ∆. Sincemi(·) is a monotonically increasing func-
tion, all individual chance constraints (24) of the Fixed Risk
Relaxation are looser than the original problem. Therefore,
the cost of the optimal solution of the Fixed Risk Relaxation
is less than or equal to the original problem.

Note that the solution of the optimization problem with
FRR is an infeasible solution to the original problem, since
(26) violates the constraint (17). In a special case where there
is only one individual chance constraint, such as the relaxed
problem in Fig. 3, the Fixed Risk Relaxation is equivalent
to the original problem.

C. Using FRR in Branch and Bound Algorithm

By using the FRR, the Branch and Bound algorithm
can be substantially sped up. In each node of the Branch
and Bound algorithm, the FRR is solved first. If the lower
bound given by the FRR is more than the incumbent, the
node is pruned without solving the original convex chance-
constrained optimization; otherwise, the node is expanded
at the branching nodes, and the original convex chance-
constrained optimization is solved at the leaf nodes.

V. SIMULATIONS

A. Problem Settings

We tested our methods on two 2-D path planning
problems: Obstacle Avoidance problem, and Go-Through-
Waypoints problem. Fig. 4 shows the example results of the
Obstacle Avoidance and the Go-Through-Waypoints prob-
lem. A vehicle starts from[0, 0], and heads to the rectangular
goal region with its center at[1.05, 1.05] and the edge length
0.1. In the Obstacle Avoidance problem, a rectangular obsta-
cle with its edge length 0.6 is placed at a random location
within the square region with its corners at[0, 0], [1, 0],
[1, 1], and[0, 1]. In the Go-Through-Waypoint problem, two
rectangular waypoints (regions) with their edge length 0.1 are
placed at random locations within the same square region.
The risk bound is set to∆ = 0.001 for both problems. The
following discrete-time dynamics model is used.

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1
0 0 0 1



B =


∆t2/2m 0

0 ∆t2/2m
∆t/m 0

0 ∆t/m


∆t = 0.5, m = 1
umin = [−0.5,−0.5] , umax = [0.5, 0.5]

wt is sampled from a zero-mean Gaussian distribution with
variance.

Σw =


10−5 0 0 0

0 10−5 0 0
0 0 0 0
0 0 0 0


The cost is the total control input during the planning horizon
1 ≤ t ≤ T :

J(X̄, U) =
T∑

t=1

(|ux| + |uy|) .

B. Results

Fig. 4 shows the solutions given by the proposed al-
gorithm. The circles represent three standard deviations of
the distribution of vehicle locations, while the plus marks
(‘+’) represent the nominal location at each time step. The
resulting probabilities of constraint violation in the examples
are 1 − Pr

[
C{φ}

]
= 0.000938 for the Obstacle Avoid-

ance problem, and0.000991 for the Go-Through-Waypoints
problem, both of which satisfy the given chance constraint
1−Pr

[
C{φ}

]
≤ 0.001. These results show that our proposed

method successfully guides the vehicle to the goal while
respecting the chance constraint in both problems. In Fig.
4-Top, it appears that the path cuts across the obstacle.
This is due to the discretization of the plant dynamics; the
optimization problem only requires that the vehicle locations
at each discrete time step satisfies the constraints, and does
not care about the state in between. This issue can be
addressed by a constraint tightening method[24].

Table I compares the performance of three algorithms
on the Obstacle Avoidance problems and the Go-Through-
Waypoints problem. The three algorithms are Branch and
Bound with optimized risk allocation and Fixed Risk Re-
laxation (FRR) (the proposed algorithm), the Branch and
Bound with optimized risk allocation but without the FRR,
and our previous method [20] that uses a fixed risk allo-
cation. Although [20] only deals with obstacle avoidance
problems, we have extended the approach here to Go-
Through-Waypoints problems in order to be compared with
the algorithm proposed in the present paper. The values
in the table are the averages of 20 runs with random
locations for the obstacle and waypoints. The probability of
constraint violation (1 − Pr

[
C{φ}

]
) is evaluated by Monte-

Carlo simulation with106 samples.
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Fig. 4. Example simulation results. Top: Obstacle Avoidance problem, Bot-
tom: Go-Through-Waypoints problem. The circles represent three standard
deviations of the distribution of vehicle locations.

a) Conservatism:As discussed in Section II, satisfac-
tion of the decomposed chance constraints is a sufficient
condition for satisfaction of the original chance constraint
(8). Conservatism is introduced by the difference between
the two sides of the inequalities (14) and (19).

The results show that the conservatism of our proposed
method is significantly smaller than the fixed risk allocation
method. In almost all problems of interest, the chance con-
straint is active. This means that when the solution is exactly
optimal, the probability of constraint violation1−Pr

[
C{φ}

]
is equal to the risk bound∆, which is set to∆ = 0.001 in our
simulations. Table I shows that the probability of constraint
violation of our proposed algorithm is very close to∆. On
the other hand, the fixed risk allocation method [20] has non-
negligible conservatism; its probability of constraint violation
is less than the half of the given risk bound. This significant
conservatism is due to the fixed individual risk bounds (risk
allocation).

We cannot evaluate the suboptimality in terms of the cost
function, since the exactly optimal solution is unavailable.
Nonetheless, we can observe in Table I that the proposed
approach results in a better cost than the fixed risk allocation
method.

b) Computation time: The cost of reduced conser-
vatism is the increased computation time. However, the

results show that the FRR significantly enhances the com-
putation speed of the Branch and Bound algorithm in both
problems. As shown in Table I, although the algorithm with
FRR always results in the exactly same solution as the one
without FRR, its computation is 10-20 times faster. Note
that the advantage of FRR is smaller on the Go-Through-
Waypoints problem than on the Obstacle Avoidance problem.
This is due to the shallow depth of the search tree. Typically,
the advantage of using FRR is more significant in a problem
with deep search tree such as the obstacle avoidance problem.
Since a problem with a deep search tree typically requires
larger computation time, it can be said that the advantage of
using FRR is more significant in difficult problems.

TABLE I

COMPARISON OF COMPUTATION TIME, PROBABILITY OF CONSTRAINT

VIOLATION , AND COST OF THREE ALGORITHMS. THE VALUES ARE THE

AVERAGES OF20 RUNS WITH RANDOM LOCATION OF OBSTACLE AND

WAYPOINTS. THE SECOND ROW SHOWS THE RESULTING PROBABILITY

OF CONSTRAINT VIOLATION. THE RISK BOUND IS SET TO∆ = 0.001.

Optimized risk allocation Fixed risk
allocationw/ FRR w/o FRR

Obstacle Avoidance problem
Comp. time [sec] 35.97 875.38 2.56

PCV* 9.975 × 10−4 2.829 × 10−4

Cost 0.352 0.357

Go-Through-Waypoints problem
Comp. time [sec] 25.53 283.32 0.656

PCV* 9.784 × 10−4 4.061 × 10−4

Cost 0.576 0.585
*PCV = Probability of constraint violation

VI. CONCLUSION

We proposed two innovative ideas to solve non-convex
chance constrained optimization problem efficiently with
small suboptimality. The first is the recursive decomposition
technique of a chance constraint (Section II), which enables
its efficient evaluation, as well as the application of the
branch and bound method. The second is the Fixed Risk
Relaxation (Section IV), which makes the branch and bound
algorithm significantly faster by giving lower bounds to
convex chance-constrained optimization problems efficiently.
The validity and efficiency of our method was demonstrated
by simulations.
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