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Abstract. Hybrid discrete-continuous models, such as Jump Markov
Linear Systems, are convenient tools for representing many real-world
systems; in the case of fault detection, discrete jumps in the continuous
dynamics are used to model system failures. Stochastic uncertainty in
hybrid systems arises in both the continuous dynamics, in the form of
uncertain state estimation, disturbances or uncertain modeling, and in
the discrete dynamics, which are themselves stochastic.
In this paper we present a novel method for optimal predictive control of
Jump Markov Linear Systems that is robust to both continuous and dis-
crete uncertainty. The approach extends our previous ‘particle control’
approach, which approximates the predicted distribution of the system
state using a finite number of particles. Here, we present a weighted par-
ticle control approach, which uses importance weighting to ensure that
low probability events such as failures are considered. We demonstrate
the method with a car braking scenario.

1 Introduction

Hybrid discrete-continuous models, such as Jump Markov Linear Systems (JMLS),
are convenient tools for representing many real-world systems[1, 2]. In the case
of fault detection and fault-tolerant control, discrete jumps in the continuous dy-
namics are used to model component failures[3]. Stochastic uncertainty in hybrid
systems arises in both the continuous dynamics, in the form of uncertain state
estimation, disturbances or uncertain modeling, and in the discrete dynamics,
which are themselves stochastic.

Control of stochastic systems has received a great deal of attention in recent
years, see [4] for a survey. Much work has been done in the area of feedback
control for JMLS, see [5] for a survey. By contrast, predictive optimal stochas-
tic control takes into account probabilistic uncertainty in dynamic systems and
aims to control the predicted distribution of the system state in some optimal
manner. In the case of stochastic linear dynamic systems, recent work has de-
veloped tractable algorithms for optimal, robust predictive control[6–10]. These
methods are robust in the sense that they ensure the system state leaves a given
feasible region with probability at most δ. This chance-constrained formulation



is a powerful one, as it enables the user to specify a desired level of conservatism,
which can be traded against performance.

Chance-constrained optimal stochastic control of JMLS has a number of im-
portant applications. In the case of fault-tolerant control, we would like to be
able to control a system in an optimal manner while taking into account both
continuous disturbances and the possibility of system failures, such that task
failure is below a certain threshold. For example, in controlling an autonomous
ground vehicle we would like to ensure that, despite having brakes that may fail,
collision with obstacles or other vehicles happens with low probability. Recent
work developed a Model Predictive Control approach for JMLS which imposes
constraints on the mean and covariance of the system state[11]. These are not
the same as chance constraints even when all forms of uncertainty are Gaussian
since the state distribution in JMLS is multimodal.

In this paper we develop a tractable algorithm for chance-constrained op-
timal predictive control of JMLS that extends our previous work on particle-
based control of continuous systems[12]. The key idea behind this approach is
to approximate all probability distributions using a finite number of samples, or
‘particles’. In doing so, we approximate the stochastic predictive control prob-
lem as a deterministic one, with the property that as the number of particles
tends to infinity, the approximation tends to the original stochastic problem.
The resulting optimization problem can be solved efficiently using Mixed Inte-
ger Linear Programming (MILP). The approach generalizes previous work by
[17] by handling stochastic uncertainty with general distributions, in both the
continuous and discrete dynamics.

In this paper we present first a straightforward extension of the particle con-
trol method to JMLS. This extension uses particles to represent uncertainty in
the discrete mode sequences as well as the continuous variables. An empirical
validation with a ground vehicle braking scenario shows that the method is effec-
tive, but is prone to neglect low-probability events such as failures. We therefore
develop a new weighted particle control approach that overcomes these difficul-
ties by drawing on the idea of importance weighting from particle filtering[13–16].
The key idea is that by sampling mode sequences from a proposal distribution,
and representing the discrepancy between the proposal distribution and the true
distribution by an analytic weight, an increase in sampling efficiency can be
achieved. The resulting optimization can be solved efficiently and to global op-
timality using MILP. We demonstrate empirically that a dramatic improvement
in performance is achieved by employing the weighted particle control approach.

2 Problem Statement

In this paper we are concerned with the following stochastic control problem:

Design a finite, optimal sequence of control inputs u0:T−1, taking into
account probabilistic uncertainty, which ensures that the continuous state
trajectory xc,1:T of a JMLS leaves a defined feasible region F with prob-
ability at most δ, and satisfies constraints on the expected system state.



We consider four sources of stochastic uncertainty; initial state uncertainty;
system model uncertainty; disturbances, modeled as stochastic processes; and
random mode transitions. These transitions can model component failures, for
example. We assume that the p.d.f.s of the uncertainty mentioned here are known
at least approximately, but we make no assumptions about the form the distri-
butions take. We assume a cost function that is piecewise linear in the control
inputs; previous work has shown that minimum control effort and minimum
time problems can be posed using such functions[18]. Finally, we assume that
the feasible region F is a polytope, and that the control inputs ut are subject to
interval constraints.

We define a Jump Markov Linear System as a system with hybrid discrete-
continuous state x = 〈xc, xd〉. The discrete state xd is a Markov chain that can
take one of M values and evolves according to:

p(xd,t+1 = j|xd,t = i) = Tij . (1)

The continuous state xc evolves according to:

xc,t+1 = A(xd,t)xc,t + B(xd,t)ut + νt. (2)

The initial hybrid discrete-continuous state is random, with a known distribution
p(xc,0, xd,0). The variable νt is a random disturbance process distributed accord-
ing to p(νt|xd,t), which we assume independent from the initial state. Modeling
errors can be modeled as an additional stochastic disturbance. For notational
simplicity we assume a single disturbance process.

The key idea behind solving this stochastic control problem is to approxi-
mate all distributions using samples, or particles, and then solve the resulting
deterministic problem. In Section 3 we review some results relating to sampling
from random variables. In Section 4 we review the chance-constrained particle
control approach introduced in [12] for systems with continuous state. We then
extend this approach to JMLS in Section 5 and show that the resulting problem
can be solved using MILP. In Section 6 we introduce a novel weighted parti-
cle control method that gives a dramatic increase in performance by using a
proposal distribution to sample from discrete mode sequences. In Section 7 we
provide empirical results.

3 Sampling from Random Variables

Previous work has shown that approximating the probability distribution of a
random variable using samples drawn from that distribution, or particles, can
lead to tractable algorithms for estimation and control[19]. Here we review some
properties of samples drawn from random variables.

Suppose that we have a multivariate random variable X with p.d.f. p(x).
We draw N independent, identically distributed random samples x(1), · · · ,x(N)

from this distribution. Often, we would like to calculate an expectation involving



this random variable:

EX [f(X)] =
∫

X

f(x)p(x)dx (3)

In many cases this integral cannot be evaluated in closed form. Instead it can
be approximated using the sample mean:

ÊX [f(X)] =
1
N

N∑
i=1

f(x(i)). (4)

From the strong law of large numbers, the sample mean converges to the true
expectation as N tends to infinity. This can be used to approximate the prob-
ability of a certain event, such as the event f(x) ∈ A. This is given exactly
by:

PA =
∫

f(x)∈A

p(x)dx = EX [g(x)] where g(x) =

{
1 f(x) ∈ A

0 f(x) /∈ A.
(5)

We can therefore approximate PA as:

P̂A =
1
N

N∑
i=1

g(x(i)) where P̂A −→ PA as N −→ ∞. (6)

Note that
∑N

i=1 g(x(i)) is simply the number of particles for which f(x(i)) ∈ A.
Assuming that evaluating f(·), and checking whether a given value is in A, are
both straightforward, calculating P̂A is also; we simply need to count how many
of the propagated particles, f(x(i)) fall within A. By contrast, evaluating PA

as in (5) requires a finite integral over an arbitrary probability distribution,
where even calculating the bounds on the integral may be intractable. Hence
the particle-based approximation is extremely useful, especially given the con-
vergence property in (6). In Section 4 we use this property to approximate the
stochastic control problem defined in Section 2.

3.1 Importance Weighting

In certain situations, drawing samples from the distribution p(x) may be in-
tractable. In such cases, previous work proposed sampling from an alternative
proposal distribution and using importance sampling to correct for the discrep-
ancy between the desired distribution and the proposal distribution[19]. We re-
view relevant results here.

The proposal distribution q(x) is chosen so that sampling from q(x) is easy,
and so that p(x) > 0 implies q(x) > 0. We draw N independent, identically
distributed random samples x(1), · · · ,x(N) from q(x). To each sample we assign
an importance weight wi, where wi = p(x(i))/q(x(i)). In order to approximate
the expectation of the function f(·) we now use the weighted sample mean:

ÊX [f(X)] =
1
N

N∑
i=1

wif(x(i)). (7)



From the strong law of large numbers, we have the convergence property as N
tends to infinity:

ÊX [f(X)] −→ EX [f(X)]. (8)

In order to approximate the probability of the event f(x) ∈ A we use the weighted
number of propagated particles that fall within A:

P̂A =
1
N

N∑
i=1

wig(x(i)), (9)

where g(·) is as defined in (5). As in (6) we have the convergence property
P̂A −→ PA as N → ∞.

4 Review of Particle Control Approach

In this section we review the chance-constrained particle control approach intro-
duced in [12] for robust control of systems with continous state.

The key observation behind the method is that, by approximating all proba-
bilistic distributions using particles, an intractable stochastic optimization prob-
lem can be approximated as a tractable deterministic optimization problem. By
solving this deterministic problem we obtain an approximate solution to the
original stochastic problem, with the additional property that as the number of
particles used tends to infinity, the approximation becomes exact.

The method is outlined as follows:

1. Generate N samples from the joint distribution of initial state and disturbances.

2. Express the distribution of the future state trajectories approximately as a set of
N analytic particles, where each particle x

(i)
1:T corresponds to the state trajectory

given a particular set of samples. Each particle depends explicitly on the control
inputs u0:T−1, which are yet to be generated.

3. Approximate the chance constraints in terms of the generated particles; the prob-
ability of x1:T falling outside of the feasible region is approximated as the fraction
of particles x

(i)
1:T that do so.

4. Approximate the cost function in terms of particles.

5. Solve the deterministic constrained optimization problem for control inputs u0:T−1.

The method is illustrated in Fig. 1. The general particle control problem results
in a deterministic optimization problem that is intractable, except for very small
problems. However in [12] we showed that for a polytopic feasible region F ,
piecewise linear cost function h and linear system dynamics xt+1 = Axt + But,
the deterministic optimization can be solved to global optimality in an efficient
manner using MILP. This relies on the fact that each particle x(i)

1:T is a linear
function of the control input sequence u0:T−1.This is also true for time-varying
linear systems. In Section 5 we use this to extend the method to JMLS.
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Fig. 1. Illustration of chance constrained particle control method for continuous sys-
tems. For this vehicle path planning scenario, the feasible region is defined so that the
plan is successful if the vehicle avoids the obstacles at all time steps and is in the goal
region at the final time step. The objective is to find the optimal sequence of control
inputs so that the plan is successful with probability at least 0.9. The particle control
method approximates this so that at most 10% of the particles fail.

5 Straightforward Extension of Particle Control to JMLS

For JMLS, we approximate the stochastic control problem by sampling from
discrete mode sequences as well as disturbances. Given a discrete mode sequence
and samples for all of the disturbance variables, the future system state trajec-
tory is a known deterministic function of the control inputs. Hence each particle
provides a sample of the future state trajectory corresponding to a sample of the
discrete mode sequence and disturbances.

Note that the mode sequence is independent of the control inputs and the
continuous state in JMLS, and hence:

p(xc,1:T , xd,1:T |u) = p(xc,1:T |xd,1:T ,u)p(xd,1:T ). (10)

We therefore first generate samples of the mode sequence xd,1:T , and for each
sample x

(i)
d,1:T , we generate samples of the disturbance variables. While there are

MT different mode sequences, sampling from p(xd,1:T ) is straightforward due to
the Markov property. The algorithm is described in full in Table 1. From the
results in Section 3 we have convergence of the approximated problem to the
original stochastic problem as the number of particles tends to infinity.

5.1 MILP Solution of JMLS Particle Control

We now show that the approximated problem can be solved efficiently using
MILP. For a given particle, the mode at each time step in the horizon is known, as
are the disturbances at each time step. From the definition of JMLS in Section 1
we obtain the following expression for each particle:

x(i)
c,t =

t−1∑
j=0

(t−j−1∏
l=1

A(x(i)
d,l)

)(
B(x(i)

d,j)uj + ν
(i)
j

)
+

( t∏
l=1

A(x(i)
d,l)

)
x(i)

c,0. (12)



1) Generate N samples of the initial discrete mode
˘
x

(1)
d,0, . . . , x

(N)
d,0

¯
according to

the distribution p(xd,0).

2) For each sample x
(i)
d,0, generate a sample of the initial continuous state

˘
x

(1)
c,0, . . . ,x

(N)
c,0

¯
according to p(xc,0|x(i)

d,0).

3) For each sample x
(i)
d,0 generate a sample of the discrete mode sequence x

(i)
d,1:T

according to p(xd,1:T |xd,0).

4) For each sample x
(i)
d,0:T generate a sample of the disturbances

˘
ν

(i)
0 , . . . , ν

(i)
T−1

¯

from the distribution p(ν0, . . . , νT−1|x(i)
d,0:T ).

5) Express the distribution of the future state trajectories approximately as a set
of N particles, where each particle x

(i)
c,1:T corresponds to the continuous state

trajectory given a particular set of samples
˘
x

(i)
0 , x

(i)
d,1:T , ν

(i)
0 , · · · , ν

(i)
T−1

¯
. Each

particle depends explicitly on the control inputs u0, · · · ,uT−1, which are yet
to be generated.

6) Approximate the expected state constraints and chance constraints in terms
of the generated particles.

E[x
(i)
1:T ] ≈ 1

N

NX

i=1

x
(i)
1:T = xequality

1:T p(xc,1:T /∈ F ) ≈ 1

N

NX

i=1

g(x
(i)
1:T ) ≤ δ, (11)

where g(·) is as defined in (5).
7) Approximate the cost function in terms of particles.
8) Solve deterministic constrained optimization problem for inputs u0:T−1.

Table 1. Straightforward Particle Control Approach for JMLS

Note that this is a linear function of the control inputs, and that x(i)
c,0, ν

(i)
j and

x
(i)
d,l are all known values. Hence each particle x(i)

c,1:T is linear in the control inputs.

In accordance with (11), we need to constrain the number of particles that
fall outside of the feasible region. In the same manner as described in [12], we
define a set of N binary variables z1, · · · , zN , where zi ∈ {0, 1}. These binary
variables are defined so that zi = 0 implies that particle i falls inside the feasible
region. We then constrain the sum of these binary variables:

1
N

N∑
i=1

zi ≤ δ. (13)

This constraint ensures that the fraction of particles falling outside of the feasible
region is at most δ. In [12] we showed how to impose constraints such that
zi = 0 =⇒ x(i)

1:T ∈ F for convex and non-convex polygonal feasible regions. We
do not repeat this here, but we do note that the linearity of (12) and piecewise
linearity of the cost function h ensures that the encoding results in a MILP, which
can be solved efficiently to global optimality. We have therefore introduced a new
method for robust optimal control of JMLS, where the probability distributions
of uncertain variables can take an arbitrary form.



1) Generate N samples of the initial discrete mode
˘
x

(1)
d,0, . . . , x

(N)
d,0

¯
according to

the distribution p(xd,0).

2) For each sample x
(i)
d,0, generate a sample of the initial continuous state

˘
x

(1)
c,0, . . . ,x

(N)
c,0

¯
according to p(xc,0|x(i)

d,0).

3) For each sample x
(i)
d,0 generate a sample of the discrete mode sequence x

(i)
d,1:T

according to the proposal distribution q(xd,1:T ).

4) For each sample x
(i)
d,0:T generate a sample of the disturbances

˘
ν

(i)
0 , . . . , ν

(i)
T−1

¯

from the distribution p(ν0, . . . , νT−1|x(i)
d,0:T ).

5) For each sample x
(i)
d,0:T calculate p(x

(i)
d,0:T ) and assign weight wi as in (16).

6) Express the distribution of the future state trajectories approximately as a set
of N particles, where each particle x

(i)
c,1:T corresponds to the continuous state

trajectory given a particular set of samples
˘
x

(i)
0 , x

(i)
d,1:T , ν

(i)
0 , · · · , ν

(i)
T−1

¯
.

7) Approximate the chance constraints using the weighted fraction of particles
outside of the feasible region:

p(x1:T /∈ F ) ≈ 1

N

NX

i=1

wig(x
(i)
1:T ) ≤ δ. (14)

8) Approximate the expected state constraints using the weighted sample mean
approximation, for example:

E[x1:T ] = xequality
1:T becomes

1

N

NX

i=1

wix
(i)
1:T = xequality

1:T . (15)

9) Approximate the cost function in terms of weighted particles.
10) Solve the deterministic constrained optimization problem for inputs u0:T−1.

Table 2. Weighted Particle Control Approach for JMLS

6 Weighted Particle Control for JMLS

We now extend the method described in Section 5 to deal more efficiently with
low probability mode transitions such as failures. The key idea behind the exten-
sion is to sample mode sequences from a proposal distribution designed to ensure
that low probability events such as failures are more likely to be taken into con-
sideration. Drawing on the idea of importance weighting in particle filtering[19],
the discrepancy between the actual distribution over mode sequences and the
proposal distribution is represented using an analytical weighting. In doing so,
we retain the convergence property that the approximate problem converges to
the original stochastic problem as the number of particles tends to infinity. The
algorithm is described in Table 2.

We now show how to calculate the weights wi. For the approximated problem
to converge to the original stochastic problem as the number of particles tends
to infinity, weights must be assigned according to[19]:

wi =
p(x(i)

c,1:T , x
(i)
d,1:T |u0:T−1)

q(x(i)
c,1:T , x

(i)
d,1:T |u0:T−1)

. (16)



Since we sample the disturbances from their true distributions, the joint proposal
q(xc,1:T , xd,1:T ) can be written in terms of the proposal over mode sequences to
give:

wi =
p(x(i)

c,1:T |x(i)
d,1:T ,u0:T−1)p(x(i)

d,1:T )

p(x(i)
c,1:T |x(i)

d,1:T ,u0:T−1)q(x
(i)
d,1:T )

=
p(x(i)

d,1:T )

q(x(i)
d,1:T )

. (17)

Since calculating both the true probability of a given mode sequence and its
probability according to the proposal distribution is straightforward, calculating
the weight to assign to a sampled mode sequence is also.

We now show that the weighted particle control problem for JMLS can be
solved using MILP. The key insight is that, since the weights do not depend on
the control inputs u0:T−1, incorporating weighted particles does not affect the
form of the optimization problem.

The weighted particle control problem can be formulated in exactly the same
manner as the unweighted approach described in Section 5, except for the ap-
proximate chance constraint and the approximate cost function. We now must
constrain the weighted fraction of particles that fall outside of the feasible re-
gion. Defining again binary variables zi such that zi = 0 =⇒ x(i)

c,1:T ∈ F , we
constrain the weighted sum of the binary variables:

1
N

N∑
i=1

wizi ≤ δ. (18)

The weights wi do not depend on the control inputs, as shown in (17). Hence
(18) is a linear constraint on the binary variables zi. The expected cost is now
approximated using the weighted sample mean as follows:

E[h] ≈ ĥ =
1
N

N∑
i=1

wih(u0, · · · ,uT−1,x
(i)
c,1:T ). (19)

As the number of particles tends to infinity, we have the convergence result
ĥ −→ E[h]. Furthermore, since the weights wi do not depend on the control
inputs, the approximate value ĥ is piecewise-linear in the control inputs assuming
a piecewise-linear cost function h. Similarly, the expected state is approximated
using the weighted sample mean. This weighted sample mean is a linear function
of the control inputs, hence expected state constraints such as (15) are linear.

In summary, therefore, the weighted particle control problem for JMLS can
be posed as a MILP. It now remains to choose a proposal distribution q(x(i)

d,1:T ).

6.1 Choosing a Proposal Distribution

The convergence of the approximate problem to the original deterministic prob-
lem applies for any choice of the proposal distribution q(xd,1:T ) subject to the
constraint that q(xd,1:T ) > 0 wherever p(xd,1:T ) > 0. However for a finite number
of particles the performance of the weighted particle control approach is affected



greatly by the choice of q(xd,1:T ). As in particle filtering, the appropriate choice
of q(xd,1:T ) depends on the application, and a great deal of work has focussed on
developing proposal distributions for specific applications, for example [14, 20].
We now introduce a proposal distribution designed to improve the performance
of the particle control approach for JMLS when dealing with low-probability
transitions such as faults.

Consider first a proposal distribution equal to the true mode sequence dis-
tribution:

q(xd,1:T ) = p(xd,1:T ). (20)

In a JMLS with low-probability transitions such as faults, there is a high prob-
ability that no fault transitions will be sampled if this proposal is used.

Next consider a proposal equal to the pseudo-uniform distribution q(xd,1:T ) =
U(xd,1:T ), where U(·) assigns an equal probability to each mode sequence for
which p(xd,1:t) > 0. More precisely:

U(xd,1:T ) =

{
1/np p(xd,1:T ) > 0
0 p(xd,1:T ) = 0,

(21)

where np is the number of mode sequences for which p(xd,1:T ) > 0. Using this
proposal ensures that sequences involving faults are sampled with the same like-
lihood as the mode sequence without failures, which in reality has much higher
probability. This means that the control algorithm is more likely to take into
account the sequences involving faults in the control design. The drawback in
using this proposal is that there is a significant likelihood that the nominal mode
sequence is not sampled. If this occurs, the deterministic optimization will typi-
cally be infeasible, since achieving most control tasks requires nominal operation
of the system components with non-zero probability.

We therefore choose a proposal distribution q∗(xd,1:T ) that increases the
probability of sampling failure sequences, while ensuring that the nominal mode
sequence is sampled at least once with a probability λ:

q∗(xd,1:T ) =

{
Pnom xd,1:T = xnom

d,1:T
1−Pnom

np−1 xd,1:T 	= xnom
d,1:T

where Pnom = 1 − (1 − λ)1/N . (22)

The proposal distribution q∗(xd,1:T ) therefore ensures a minimum probability of
sampling the nominal mode sequence and shares the remaining probability space
evenly among the remaining mode sequences.3

In Section 7 we give an empirical analysis that shows that using this pro-
posal distribution the weighted particle control algorithm significantly outper-
forms straightforward particle control for JMLS when there are low-probability
transitions such as failures.

3 For simplicity of exposition, q∗(xd,1:T ) described here assumes a single nominal mode
sequence. The extension to multiple nominal mode sequences is straightforward.



 

goal start 

Fig. 2. Illustration of ground vehicle brake failure scenario. The expected vehicle po-
sition must arrive at the goal in the minimum possible time, while avoiding collision
with the wall.

7 Results

In order to illustrate the new particle control approach for JMLS we use a simple
ground vehicle braking example. In this example the system to be controlled is
a ground vehicle that can accelerate and brake along a one-dimensional track.
The brakes however, can be in one of two modes; mode 1 = ok and mode 2 =
faulty. In the ok mode, accelerations and decelerations can be applied to the
vehicle, however when the brakes are in the faulty mode, decelerations cannot
be applied. The continuous system state xc is comprised of the position along
the track y and the velocity ẏ. The continuous state evolves according to:

ẋc =
[
ẏ
ÿ

]
=

[
0 1
0 −bfric

] [
y
ẏ

]
+ B(xd,t)

[
upower

ubrake

]
+ νt, (23)

where the control inputs upower and ubrake are both constrained to be greater
than or equal to zero (in other words neither negative power nor negative brak-
ing can be applied). The term bfric represents a damping term due to friction.
Random disturbances νt act on the vehicle. The matrix B(xd,t) is defined as
follows:

B(xd,t) =

⎧⎨
⎩

[
1 −1

]
xd,t = ok[

1 0
]

xd,t = faulty.
(24)

The discrete state evolves according to the transition matrix:

T =
[

0.999 0.001
0.0 1.0

]
. (25)

We consider the problem where the car is initially at rest and must travel to the
goal and stop, as illustrated in Fig. 2. Task failure is defined as collision with
the wall.

Fig. 3 compares two typical solutions generated by the weighted particle con-
trol approach for a maximum probability of failure of 0.01 and 10−6 respectively.
The more conservative solution takes 9s, while the aggressive one takes only 6s.
We now demonstrate that the weighted particle control approach enables the
controller to take into account the low probability brake failures. Fig. 4 com-
pares two typical solutions generated with and without weighting respectively.
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Fig. 3. Two typical solutions with 100 particles. Left: Maximum probability of task
failure set to 0.01. The vehicle arrives at the goal within 6s, but will collide with the
wall if a brake failure occurs at or before 5s. This particular solution gives a true
probability of task failure of approximately 0.006. Right: Maximum probability of task
failure set to 10−6. The vehicle travels more slowly and arrives later than with the more
aggressive solution. In the case of brake failure, however, friction brings the vehicle to
rest before collision with the wall. This solution is therefore robust to brake failure,
giving a probability of task failure of approximately 1.0 × 10−6

In the unweighted case, the algorithm did not sample any of the failure tran-
sitions and so has generated an inappropriately aggressive control policy that
does not take into account the possibility of brake failure. By increasing the
probability of sampling failure transitions, the weighted algorithm by contrast
has taken into account brake failure, generating an appropriately conservative
plan.

Fig. 5 compares the weighted particle control approach against the unweighted
particle control approach in terms of the true probability of task failure. In this
example the desired probability of task failure was 10−6. The weighted approach
achieves a true probability of failure dramatically closer to the desired value
than the unweighted approach. Notice also that for larger particle sets the un-
weighted case approaches the weighted one, except that the variance is much
greater in the unweighted case. This is because on the rare occasion that brake
failure transitions are sampled, the solution is very different from the average
case. This variance is particularly undesirable for control. Fig. 5 also shows the
solution time as a function of the number of weighted particles used. Solutions
were found in seconds even for relatively large particle sets.

8 Conclusion

In this paper we have presented a novel approach to optimal stochastic control for
Jump Markov Linear Systems that takes into account probabilistic uncertainty
due to disturbances, uncertain state estimation, modeling error and stochastic
mode transitions. The new weighted particle control method is robust in ensur-
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Fig. 4. Typical solutions with and without weighting for δ = 10−6 and 100 particles.
The top row shows the particles used for planning, while the bottom row shows Monte-
Carlo simulations of the true state trajectory. Left: Without weighting, no particles
have sampled the brake failure so the controller plans aggressively. In reality, there is
a probability of approximately 0.0050 that a brake failure occurs at or before t = 5s,
causing the vehicle to collide with the wall. Right: With weighting, many particles have
sampled brake failures, hence the controller plans taking brake failures into account.
The controller is less aggressive, giving a collision probability of approximately 1.0 ×
10−6.

ing that the probability of task failure is less than a defined threshold δ. By
approximating the original stochastic problem as a deterministic one using a
number of importance-weighted particles, the approach is able to handle arbi-
trary probability distributions. Furthermore the approximation error tends to
zero as the number of particles tends to infinity. Importance weighting is used
in conjunction with sampling from a proposal distribution to make sure that the
method takes into account low probability events such as component failures.
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