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Abstract— Multiple-Model fault detection is a powerful
method for detecting changes, such as faults, in dynamic
systems. In many cases, the ability of such a detection scheme
to distinguish between possible models for the system dynamics
depends critically on the control inputs applied to the system.
Prior work has therefore aimed to design control inputs in
order to improve fault detection. We previously developed a
new method that uses constrained finite horizon control design
to create control inputs that minimize an upper bound on the
probability of model selection error. This method is limited,
however, to the problem of selection between two models. In
this paper we describe a new method that extends this approach
to handle an arbitrary number of models. By optimizing subject
to hard constraints, the new method can ensure that a defined
task is fulfilled, while optimally discriminating between models.
This means that the discrimination power of the designed
control input can be much greater than that created by other
approaches, which typically design ‘auxiliary’ signals with
limited power so that the effect on the system state is small.
Furthermore, the optimization criterion, which is an upper
bound on the probability of model selection error, has a more
meaningful interpretation than alternative approaches that are
based on information gain, for example.

We demonstrate the method using an aircraft fault detection
scenario and show that the new method significantly reduces
the bound on the probability of error when compared to a
manually generated identification sequence and a fuel-optimal
sequence.

I. INTRODUCTION

In multiple-model (MM) fault detection it is necessary to
select the most likely model from a finite set, given observa-
tions [1][2]. For example, fault detection can be posed as a
problem of deciding whether the dynamic model describing
the nominal behavior of a system or the dynamic model
describing a failure is most likely[3]. Well-known methods
exist for selecting a model given a set of observations[3][4].
For this paper we assume a Bayesian decision rule, which
selects the most likely model given the observations and
a prior distribution over the models. The ability of any
detection method to discriminate between different com-
peting dynamic system models is highly dependent on the
control inputs applied to the system. By designing control
inputs to discriminate between models, the performance of
the detection system can be enhanced greatly. In this paper
we present a new method for designing system inputs that
discriminate between the possible models in an optimal
sense.

The problem of control design for model discrimina
tion has received a great deal of attention[5][6][7][8]. Typ-
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ical approaches design auxiliary signals that are added
to the nominal control signal for the purpose of model
discrimination[7][8]. The auxiliary signal has limited power
so that its effect on the system state is limited. This, however,
also restricts the discrimination power of the signal. In our
previous work, we developed a new method that used con-
strained finite horizon control design to create discrimination
signals with respect to hard constraints[9]. These constraints
can be used to ensure that a certain task, defined in terms
of the system state, is fulfilled, or that hard constraints such
as actuator saturation are not violated. By optimizing subject
to hard constraints, the method can generate signals that are
far more effective in discrimination than a limited power
auxiliary signal.

This method was, however, limited to the problem of
discrimination between two models. In this paper, we extend
the approach described in [9] to handle an arbitrary number
of different models.

Previous approaches to the problem of control design for
model discrimination have suggested a number of different
criteria for optimization, such as information gain or the dis-
tance between the distributions of predicted observationg[7].
These criteria typicaly do not have a meaningful interpre-
tation in the context of the model selection problem. By
contrast, consistent with a Bayesian approach, we use an
upper bound on the probability of model selection error as
the optimization criterion.

The key insight behind the new method is to create a
tractable bound that applies to multiple models. The Bhat-
tacharrya bound[10] used in [9] applies only to the case of
selection between two models. We derive a new upper bound
that applies to an arbitrary number of models; this bound is
expressed in terms of the Bhattacharrya bound between pairs
of models, leading to a sum-of-Gaussians form. Then we
pose the problem of designing a finite sequence of control
inputs to minimize this bound, subject to constraints, as a
finite horizon trgjectory design problem. Lastly, we show that
in the case of linear constraints this problem can be solved
using Sequential Quadratic Programming[11].

The result of this work is a new agorithm that gener-
ates a finite sequence of control inputs that minimize an
upper bound on the probability of model selection error.
These sequences are designed subject to state and control
constraints. The algorithm can be used to ensure that a given
task, defined in terms of constraints on the expected state,
is fulfilled while optimally detecting failures; the constraints
are used for control, while the optimization is used for model
discrimination.



We present results for the example of an aircraft that has
a number of possible failure modes. Compared to a typical
sequence designed by a human, and a sequence optimized to
minimize fuel consumption, the method dramatically reduces
the upper bound on the probability of model selection error.

A. Aircraft Fault Detection Scenario

In this paper, the detection of failures on an aircraft is used
as a motivating example. The discrete time approximation to
the longitudinal dynamics of the aircraft, linearized about the
trim state, is shown in Fig. 1.
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Fig. 1. Discrete-time aircraft model linearized about the trim state.
Here z; is the state of the system at time step ¢ while y; is the observed
output of the system at time ¢, which is taken to be the pitch rate 6
and the vertical velocity V. The input is denoted u¢, and is taken to
be the requested elevator angle. We assume that the elevator actuator
saturates at +0.25rad. The terms wy and v; are the process noise and
observation noise respectively. The noise at any time step is assumed
to be independent of the noise at any other time step, and w; and v;
are independent of each other with normal distributions A/(0, Q) and
N (0, R) respectively. The initial state of the system is also assumed
to be normally distributed.

In the model selection task, we must determine which
system described by the system matrices {A, B,C, D} best
models the data. Here the situation under consideration has
an arbitrary, but finite, number of candidate models. Under
hypothesis H;, the system is described by {A;,B;,C;,D;}.
For the aircraft example, we consider three single-point
failures; the pitch rate sensor may fail, the vertical velocity
sensor may fail, or the elevator actuator may fail. This gives
the following aternative models:

o Hy: Nominal (no faults)

e Hj: Faulty pitch rate sensor

o Hy: Faulty vertical velocity sensor

o Hsj: Faulty elevator actuator

In the case of sensor faults, we assume that the sen-
sor reading is zero mean white noise, while in the case
of the actuator fault we assume that the elevator exerts
no control effort. Consistent with a Multiple-Model fault
detection framework, we assume that the system matrices
{4, B,C, D} arefully known for each of the possible faults.

1. HYPOTHESIS SELECTION AND BAYES RISk

Here we assume models are selected by Bayesian hy-
pothesis selection. Bayesian hypothesis selection between an
arbitrary number of models can be expressed as follows:

Select H; where i = arg max; p(H,|y,u).

Using Bayes' rule, this selection is given by:

p(y|H,,u)p(H,)
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Fig. 2. Selection between multiple models given an observation y and
a prior. In general Bayesian selection between multiple hypotheses
yields a number of decision regions in the space of possible observa-
tions. If the observation y falls into set ; then the classifier selects
H;. Even with Bayes optimal selection there is a finite probability of
error given by the Bayes Risk, denoted by the shaded region.
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Fig. 3. Graph showing p(y|Ho,v), p(y|H1, ) and p(y|H2,u) for two
different choices of u. In the upper figure, the predicted distributions
overlap significantly, leading to a large Bayes risk. In the lower figure,
a different selection of u has separated the distributions, meaning
that when the observation y is made, the correct hypothesis can be
selected with high confidence. The Bayes risk is very low, meaning
that the probability of error is very low.

Select H; where i = argmax; p(y|H;, u)p(H;).

The term p(H) represents prior probabilities for hypothesis
4. The priors for each hypothesis can be caculated in a
number of different ways: there may be explicit knowledge
about how a priori likely the different hypotheses are, or
the prior can represent the current belief state calculated by
an on-line multiple model estimation scheme. Methods for
calculating this belief state have been investigated by [3],
[4], [2], [12] among others.

As shown in Fig. 2, Bayesian selection yields a number
of decision regions &; defined such that:

Ri = {ylp(H;, y[u) > p(Hy,ylu) VI#i}. @)

Hypothesis i is selected if the observation y falls in region
R;. This Bayesian selection rule minimizes the likelihood of
selecting an incorrect hypothesis given the available infor-
mation. As shown in Fig. 2, the Bayesian optimal classifier
has a finite probability of selecting the incorrect hypothesis,



known as the Bayes Risk. The Bayes risk is given by:
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Since the Bayes Risk is the probability of error when using
the optimal classifier, we would like to optimize our control
inputs to the system to minimize this measure. The effect of
input choice on the Bayes Risk is illustrated in Fig. 3.

I1l. BOUNDING THE BAYES RISK FOR MULTIPLE
HYPOTHESES

The Bayes Risk is unsuitable as an optimization criterion,
since the finite integral in (2) cannot, in general, be evaluated
in closed form. In [9], we used instead a tractable upper
bound on the Bayes Risk, known as the Bhattacharrya
bound[ 10]. This bound does not, however, apply to more than
two hypotheses. In this section we therefore introduce a new
bound that applies to an arbitrary number of hypotheses.

Theorem 1. For Gaussian observation distributions, such
that p(y|H;) = N(u:, %) and p(y|H;) = N(u;,%;), the
Bayes Risk when performing hypothesis selection between an
arbitrary number of hypotheses is upper bounded as follows:

P(error) < ZZP(H 2 —e—k(i,j), 3)

i g>i
where:
o 1 _
k’(l,j) = Z(,U/j - Mi)T [Ez + Zj] ! (,uj — Ni)
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Proof: The key idea is to express the n-hypothesis Bayes
Risk in terms of the Bayes Risk between pairs of hypotheses,
and then to bound the term for each pair in a manner
analogous to the Bhattacharrya bound.

The n-hypothesis Bayes Risk given by (2) can be ex-
pressed in terms of hypothesis pairs as follows:

> Zj;éi P(y € R;, H|u)
=5 s (Ply € Ry, Hilw) + Ply € R, Hylu)). ()

Here, each term in the summation is the Bayes Risk
between hypothesis ¢ and hypothesis j. This can be written
exactly as:

(Pl € Ry, Hilw) + Ply € »%i,ku)) =
f}e (v|Hi,u)P(H; dY+fsn y|Hj,u)P(H;)dy. (6)
We now define two regions 4 and Rp as follows:

Ra = {ylp(Hi, ylu) > p(Hj, y|u)}
Rp = {ylp(H;,ylu) > p(Hj, y|u)}. @)

We can relate these regions to the decision regions ¥; and
R;. From the definition of hypothesis selection given in

Section 1I, decision region R; is where the likelihood of
hypothesis H; is greater than al other hypotheses:

Ri = {ylp(Hi,y[u) > p(Hi,ylu) VI #i}

R; = {ylp(Hj,ylu) > p(H;, ylu) VI#j5}  (8)

It is clear from (7) and (8) that the decision regions are
subsets of the regions 4 and R, such that ®; C R4 and
R; € Rp. We can therefore bound the 2-hypothesis Bayes
Risk term in (6) as follows:

Jn, P Hi, W) P(H;)dy + [ p(y|Hj, 0) P(H;)dy <
S, P(YIHis w)P(H;)dy + [ p(y|H;j,w)P(Hj)dy.(9)

The key idea in the derivation of the Bhattacharyya bound
is to express two integrals over different decision regions, as
asingle integral over the entire space of y. The integral over
decision regionsis intractable, because it involves integration
of Gaussian distributions with definite limits. The integral
over the entire space, on the other hand, can be evaluated
in closed form. In an analogous manner, we now note that
the union of the regions 4 and Rp is the entire space of
y. Using the definitions in (7), we can therefore write the
integrals in (9) as a single integral over the entire space of
y.

/ p(y|Hi, ) P(H;)dy + / p(y|H
Rp Ra
- / min{p(y|H, w)P(H,), p(y|H;, u) P

u) P(Hj)dy

Hj)}dy. (10)

We now use the following inequality[10]:
min{a, b} < a?b?, (11)

which means that the integral over y can be bounded as
follows:

/min{p(y|Hi,u)P(Hi),p(y|H u)P Hj)}dy

(y|Hy, w)p? (y| H;

w\»—A

Jw)dy.  (12)

< P(H,) P(H;)} /

Furthermore, if the distributions are Gaussian, such that
p(y|H;) = N (i, 2i) and p(y|H;) = N(5,%;), then this
integral can be evaluated in closed form to give:

[ vttt o1,

y

u)dy = e "9 (13)
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We therefore have:

P(y € ®;,H;|u) + P(y € ®;, Hj|u)
< P(H,)? P(H;)?e 07, (15)

which leads to a new upper bound on the probability of
model selection error:

P(error) < Z ZP(Hi)%P(Hj)%efk(i’j), (16)
i g>i
where (4, j) is defined in (14). O

We have therefore introduced a new upper bound on the
probability of model selection error between an arbitrary
number of models. This bound can be evaluated in closed
form, and is a summation over Gaussian-like forms. In
Section 1V we describe how this bound can be used as an
optimization criterion for finite horizon control design.

IV. FINITE HORIZON FORMULATION

As noted by [9], the design of control inputs to min-
imize the Bayes risk is a problem of optimal trajectory
design for dynamic systems. In typical optimal trajectory
design problems, an optimized sequence of control inputs
is designed so that a system passes through a sequence of
predicted states that minimize some cost function. In the
model discrimination problem, we would like to design an
optimal sequence of control inputs so that the system passes
through a tragjectory of state distributions that minimize the
probability of model selection error (Bayes Risk).

Optimal trgjectory design for linear, discrete-time systems
can be posed as a constrained optimization problem[13].
Given a tractable optimization criterion, this problem can
be solved using techniques such as Sequential Quadratic
Programming (SQP)[11]. In this section we pose the problem
of model discrimination between an arbitrary number of
models as a finite horizon trgjectory design problem, using a
similar approach to [9], and show that it can be solved using

SQP

A. A Tractable Cost Function for Model Discrimination

We would like to plan a finite sequence of inputs in order
to minimize the upper bound on the probability of error. This
form of planning is known as finite horizon planning. In this
case, if the horizon is of length %, we are concerned with
a sequence of observations y;,1...y:+r and a sequence of
iNpuUts u;...uzy 1. We define:

T T T T
y= [ Yit+1 Yiyo Yitk }
T T T T
u=[uf uf, uliy g | (17)

We assume that model selection is carried out by a Bayes
optimal classifier that makes its decision based on the horizon
of all k£ observations. Due to uncertainty in the initial state
and noise, the future observations y;.1...y:+r ae random
variables, which we denote Y;;...Y;1 . Under the assump-
tions in Section I-A, Y;; is normally distributed given a
sequence of inputs u and given a model H;. We now define

tiyig and 3., ; for time steps ¢ = 1,..., k and hypotheses
H; such that:

PYip: (Y1 Hi, w) = N (pegip, Segin)- (18)

Then the vector of all observations Y = [v,..Y,] 1"
is a vector of normally distributed random variables given a
sequence of inputs and a hypothesis. We define 1; and X; to
be the mean and covariance of the vector of all observations
such that:

Py (Y[ Hiw) = N, ).
From the above definitions the distribution of Y] is given by:

B (20)

(19)

_ T T
= [Mt+1,l-~-ﬂt+k,l

i = B[V = k) (V] — o, | ).

Here [-], denotes the value at index 7 into the vector, and
similarly []; ; denotes the value at index (i,j) into the
matrix.

Having defined 1, and 3; for al [, the bound given in (3)
provides an upper bound for the probability of error when
using the entire sequence of observations from time ¢ + 1 to
time ¢ 4+ k. We therefore use this bound as a cost function
on the finite horizon optimization formulation:

J =037 P(H) P(H;) e R0,
i >
where k(i, j) is defined in (14).
Given a hypothesis H;, the system equations in Fig. 1
are fully known. Hence the distribution p(y|H;,u) can be
calculated for al [. Explicit expressions for y; and X; are
given in [9]. For the sake of brevity, they are not repeated
here, however we note two important properties:
1) The equation for the mean of the predicted distribution
of Y islinear in the control inputs u.

2) The covariance of the predicted distribution of Y is
not a function of the control inputs u.

These properties mean that the criterion in (22) has a

particularly tractable form, enabling it to be used in a
constrained optimization formulation.

(21)

(22)

B. Linear Constraints

A powerful aspect of the constrained finite horizon formu-
lation is that optimal input sequences can be found subject
to hard constraints on the control inputs. This can be used
to model actuator saturation, for example, by constraining
Umin < Utti < Umaz- 1N [9] We showed that constraints
on the expected system state and inputs can be expressed as
linear constraints on the control inputs. The expected system
state conditioned on a hypothesis H; is a linear function of
the control inputs:

i—1 o
Elxil Hi) = > A7 (Biugy) + Ajky,
j=0

(23)

where x; is the mean of the initial system state. Hence
constraints on the expected system state of the form



E[x¢1i|H)] = goal or Xpin < E[Xi1i|H)] < Xpmaz &€
linear constraints in the control inputs. As noted in [9], by
imposing such constraints, we can:

1) Ensure that a certain task, defined in terms of the
expected system state, is fulfilled

2) Ensure that the mean of system stays within a ‘safe
operating region or within a valid linearization region

3) Ensurethat the system ends the experiment in the same
region as it started.

Here, we have restricted out attention to linear constraints,
since these lead to a tractable optimization problem. The gen-
eral formulation, however, applies to nonlinear constraints.

C. Summary

We have shown that the problem of designing a sequence
of optimal control inputs to discriminate between an arbitrary
number of models can be posed as a finite-horizon trajectory
design problem. The resulting optimization minimizes a
novel, tractable upper bound on the probability of model
selection error, and imposes constraints on the expected
system state and control inputs to ensure that a defined task
is fulfilled and that actuator limits are not violated. This
optimization can be solved efficiently using existing methods
such as Sequential Quadratic Programmming.

V. SIMULATION

In this section we present results from a number of
discrimination tasks. We use the aircraft example presented
in Section |-A, where we consider single-point failures of
the pitch rate sensor, vertical velocity sensor and elevator
actuator. In each of these tasks we control the system by
constraining the expected state. In Section V-A we constrain
the aircraft to remain within an altitude envelope. For the
sake of comparison, in Section V-B we show results from a
manually generated identification sequence. In Section V-C
the aircraft carries out an altitude change maneuver, while
optimally detecting faults.

A. Altitude Envelope

Fig. 4 and Fig.5 show results from a fault detection
scenario where the aircraft in Section I-A is constrained to
remain within a flight envelope around an atitude of 100m.
The elevator angle is constrained to be at most 0.25rad in
magnitude. The prior probabilities of models H through H3
are0.75, 0.1, 0.05 and 0.1 respectively. We assume that these
priors have been generated by a Multiple Model estimator
running up until time ¢. The optimized control input yields
an upper bound on the probability of error of 0.0013. The
bang-bang nature of the optimized control input highlights
the fact that by optimizing up against hard constraints the
discrimination power of the input signal can be much greater
than a power-bounded auxiliary signal.

B. Manually Generated Sequence

In order to identify the longitudina dynamics of an
aircraft, pilots typically use a doublet control input[14].
Fig. 6 and Fig. 7 show the results for such a control input,
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Fig. 4. Optimized input design for aircraft flight envelope scenario. Top:
Expected altitude of aircraft given nominal operation. Bottom: Opti-
mized sequence of control inputs. The optimal control discriminates
between the different models while ensuring that in the nominal case,
the aircraft altitude remains between 98 and 102m. The resulting upper
bound on the probability of model selection error is 0.0013.

T
T — e

a-O-n o -©- Ely IH ! iy

" 8 u}r -o- E,H E;
g8 “ a N ® 1

< o 1
B g 4

o
o Uk

Rate(rad/s)

|
o
o

Velocity (m/s)

Pitch
|
i

0 5 10 15
@
@ T T 2 =
g osf -o-E[yOI:ll1 2
T oL g’ | o Ely, 1] z
< -os- o 1 8
5
2 -1t 2>

0 5 10 15
2 af ! "aa 2 &
B 05l a-4a-o, j- 2 o -0~ ElyylH,] |y é
5 o [} g | -o- Ely,H)] =
1 = & S - 172 >
g c-a-ggparSeoooee >—6—6-0-0-© -8-0-0—0-0-¢ = z
= -05F 2] 2 O~y 418
‘ ma

0

T

Velocity (m/s)

N

Time(s)

Fig. 5. Expected observations for aircraft flight envelope scenario with
optimized control input. The top plot shows the nominal case, where
there are no faults. In the second and third plots, the pitch rate sensor
and vertical velocity sensors are faulty, respectively. In the bottom plot,
the elevator actuator is faulty. The optimized control input ensures that
the observation sequences in each case are as different as possible,
in order to minimize the probability of model selection error.

with the same actuator limits as for the optimized control
sequence. The resulting upper bound on the probability of
error is 0.063. Hence the optimized sequence in Fig. 4 has
significantly greater discrimination power than the manually
generated sequence.

C. Altitude Change Maneuver

The new method can use constraints to ensure that a given
control task is performed, while optimizing with respect to
discrimination. This is demonstrated in Fig. 8, where the
aircraft carries out a maneuver that changes its altitude from
100m to 120m, conditioned on the elevator actuator being
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Fig. 6. Typical manually generated identification sequence. This dou-
blet form is used by pilots to perform aircraft system identification. The
resulting upper bound on the probability of error is 0.063.
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Fig. 7. Expected observations for aircraft flight envelope scenario with
manually generated control input. The top plot shows the nominal
case, where there are no faults. In the second and third plots, the pitch
rate sensor and vertical velocity sensors are faulty, respectively. In the
bottom plot, the elevator actuator is faulty. The pitch rate failure and
elevator actuator failure cases yield somewhat similar observations,
hence the upper bound on the probability of failure is larger than for
the optimized control input.

functional. The discrimination-optimal control sequence is
compared to the fuel-optima one. Optimizing with respect
to discrimination yields an upper bound on the probability of
error of 0.0011, while optimizing with respect to fuel gives
an upper bound on the probability of error of 0.12. Hence
a significant improvement in fault detection can be achieved
by using control inputs designed for model discrimination,
rather than those designed to optimize some other criterion
and employing only passive model selection.

VI. CONCLUSION

This paper presents a novel algorithm for model dis-
crimination that uses a constrained finite horizon control
approach to ensure that a defined control objectiveis satisfied
while optimizing with regard to model discrimination. A
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Fig. 8. Discrimination-optimal and fuel-optimal control design for alti-
tude change maneuver. The discrimination-optimal sequence gives an
upper bound on the probability of error of 0.0011, while the fuel-optimal
sequence gives a bound of 0.12.

new, tractable upper bound on the probability of model
selection error allows the problem to be solved using existing
optimization methods. In contrast to prior work, the model
discrimination method presented here applies to an arbitrary
number of linear dynamic models. Simulation results show
that compared to a typical human-generated identification
sequence, and a control sequence optimized with regard to
fuel consumption, the new method significantly reduces the
upper bound on the probability of error.
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