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Abstract— Jump Markov Linear Systems are convenient mod-
els for systems that exhibit both continuous dynamics and dcrete
mode changes. Estimating the hybrid discrete-continuoustate
of these systems is important for control and fault detectia.
Existing solutions for hybrid estimation approximate the belief

However since tasks such as robot fault detection and pilot
intent recognition can be posed as hybrid state estimation
problems, it is a topic of great interest.

Exact state estimation in such systems is, in general,

state by maintaining a subset of the possible discrete mode intractable[5]. A number of tractable algorithms have been

sequences. This approximation can cause the estimator tose

proposed that approximate the true belief state[6], [7], [8

track of the true mode sequence when the effects of discrete One common approach is to store a finite subset of the possible

mode changes are subtle.

In this paper we present a method foractive hybrid estimation,
where control inputs can be designed to discriminate betwee
possible mode sequences. By probing the system for the purges
of estimation, such a sequence of control inputs can greathgduce
the probability of losing the true mode sequence compared ta
nominal control sequence. Furthermore, by using a constraied
finite horizon optimization formulation, we are able to guarantee
that a given control task is achieved, while optimally deteting
the hybrid state.

In order to achieve this, we present three main contributiors.
First, we develop a method by which a sequence of control ings
is designed in order to discriminate optimally between a finie
number of linear dynamic system models. These control inpwt
minimize a novel, tractable upper bound on the probability o
model selection error. Second, we extend this approach to delop
an active estimation method for Jump Markov Linear Systems ly
relating the probability of model selection error to the probability
of losing the true mode sequence. Finally, we make this metHo
tractable using a principled pruning technique.

Simulation results show that the new method applied to
an aircraft fault detection problem significantly decrease the
probability of a hybrid estimator losing the true mode sequece.

I. INTRODUCTION

discrete mode sequences[9], [10]. However, by approximgati
the true belief state it is possible to lose track of the true
mode sequence, at which point the estimator diverges.d@rsvi
work has highlighted this problem and suggested a humber of
solutions, for example [2], [9], [11], [12], [13], [14].

These approaches are ‘passive’ in the sense that they attemp
to do the best possible with the observations that are made
available during nominal operation. In many cases, however
it is possible to to obtain a great deal more information @abou
the state of a hybrid system by issuing appropriate control
inputs. For example, in the case of detecting a fault in aedriv
motor, a change in the motor dynamics will not be apparent
in the observations unless some effort is requested from tha
motor.

In this paper we introduce aactive hybrid estimation
approach that generates control inputs to minimize the -prob
ability of the estimator losing the true mode sequence. This
approach applies to Jump Markov Linear Systems; here the
system is described by a discrete-time stochastic linear dy
namic model whose parameters depend on the discrete mode.
The system switches at random between modes; the discrete
mode is governed by a Markov process. Jump Markov Linear
Systems are an important class of hybrid discrete-contiguo

TOCHASTIC hybrid discrete-continuous models haveystems that have been used in a number of applications, for
been used to represent a large number of physical agxhmple [3], [4]. In order to develop the active hybrid esti-
biological systems, from Mars rovers to dancing bees[]], [2nation capability approach we provide three main technical
[3], [4]. In these models, the system dynamics depend enntributions.
which discrete mode the system is in, and discrete modeFirst, we develop a method by which a finite, constrained

transitions occur stochastically. Typically the contineand

sequence of control inputs is designed in order to discibein

discrete state is only partially observable, which meard thoptimally between a finite number of linear dynamic system

estimation of the hybrid system state is a challenging @bl
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models. The problem of control design for model discrimina-
tion has received a great deal of attention[15], [16], [1Z8],

[19], [20], [21]. Typical approaches, for example [16], J18
[19], designauxiliary signals that are added to the nominal
control signal for the purpose of model discrimination. The
auxiliary signal has low power so that its effect on the gsyste
state is limited. This, however, also restricts the disaration
power of the signal. Our new approach, by contrast, designs
control inputs with respect to hard constraints. These con-
straints can be used to ensure that a certain task, defined in
terms of the system state, is fulfilled, or that hard constsai



such as actuator saturation are not violated. By optimizingll. FINITE HORIZON CONTROL DESIGN FOROPTIMAL
subject to hard constraints, the method can generate signal MODEL DISCRIMINATION
that are fqr. more effective in .dlscr|m|nat|(.)n than a limitegd problem Statement
power auxiliary signal. In addition, control inputs are shn In thi . der the li di te-time d .
from a continuous set. This is in contrast with approacheb su ': |sdsec '%n ngE c.0n5| erthe linear discrete-ime dyieami
as [21] that choose control inputs from a finite set. system described Dy
Previous approaches to the problem of control design for Xery1 = AXer + Bu, + w,
model discrimination have suggested a number of different 7 7
. S 99 . . . Yr41 = Cxc,7—+1 + Du, + v, (1)

criteria for optimization; for example information gainr o
the distance between the observation distributions comgitdd where x. € R"= is the system state ang € R"v are
on different models[18], [19]. These criteria typically dot the observations. The variablesc R"» andv € R"v are
have a meaningful interpretation in the context of the modptocess and observation noise, respectively, which weigest
selection problem. By contrast, consistent with a Bayesiambe zero-mean, Gaussian white noise with covarigheand
approach, we use an upper bound on the probability &% respectively. The initial distributiop(x. ) is a Gaussian
model selection error as the optimization criterion. While random variable with mearx, and covariancel’, and is
probability of model selection error cannot be calculated uncorrelated with the noise variables.
closed form, we derive a novel upper bound on this value tI‘B
applies to an arbitrary number of models. This extendsiexgist . . ; . ;

: variable at a given time, e.g, is the value ok at time step
bounds that apply to selection between only two models[Zﬁ. . . ,

o - wherer is an integer. We use’ to denote the transpose of
Then we pose the problem of designing a finite sequence of .
. o . . . “x. We usexq.y to denote the finite sequenc¢gy,...,xy).
control inputs to minimize this bound, subject to constigin i~
. . . : We useP(A) to denote the probability of evemt. If the

as a finite horizon trajectory design problem. We show that In

the case of linear constraints this problem can be solvefcgusivanablex fakes continuous values, we usex) to denote its

- . P . . probability density function. Ik takes discrete valueg(x)
existing nonlinear optimization techniques such as Setiplen . I .
) : denotes its probability mass function. We Uk to denote the
Quadratic Programming[23].

Lo . . eterminant whed is a matrix, and the number of members
Our second contribution is to extend this multiple-mode

L T . S of a set when\ is a set.
discrimination method to develop an active estimation eapa In the Multiple Model selection problem, the parameters

bility for ngp Markov Linear Systems. The key insight i A, B,C,D,Q, R,%o,V} are unknown, but we assume that
that for a given discrete mode sequence, the system dynamics - : \ .
. ) . they take values from a finite sé of ‘models’ or ‘hy-
although time-varying, are fully known. By extending theoer :
. T ) potheses’ . Under modell; € H, the system parameters
bound derived for discrimination between different models . ) . ; : N .
. : re{A(i),B(:),C(3),D(7),Q(7),R(7),%X0(7), V(i) }. We assume
time-varying systems, we create a tractable upper bountienn?;1 :
. . . . at for eachi the parameters are fully known and that the
probability of a hybrid estimator losing track of the true aeo o . o
. - : tru]e model persists indefinitely. In other words, in thisteec
sequence. We then use a constrained finite horizon contrg oo . )
) . : ._we do not allow switching between the different models;
design approach to ensure that a given control task is asthjev_ .. . . . : } .
”» . . switching dynamics are considered in Section Ill. Multiple
conditioned on nominal system operation. : : . .
. . . Model selection uses Bayesian hypothesis selection ta-dete
A finite horizon control approach such as this suffers . : .
. mine the most likely system parameters given a sequence of
from the fact that the number of possible mode sequences : -
: T ; .~ observationsy,.,, a sequence of control inpuisy.;,_; and
is exponential in the number of discrete modes and in the - o . i
. ; : : a_prior distribution over models. We review Multiple Model
length of the design horizon. In practice this means that, . " . . ; :
: . Lo . Selection in Section II-B. In this paper we aim to design caint
an active hybrid estimation approach can only consider.a . : .
. . . inputs to aid model selection. The problem is stated foynall
subset of the possible mode sequences. Our third contriibuti i
) . - : as follows:
is therefore to introduce an efficient pruning method. This
method ensures that the control design only takes into atcoDefinition 2. At time step zero, given a set of modéisand a
mode sequences that aaepriori likely to contribute to the prior probability for each moddil; € H, the Optimal Model
probability of losing the true mode sequence. The result Riscrimination Problentonsists of designing a finite sequence
a tractable optimization problem that can be solved usimf control inputsug.;,—1 that minimizes the probability of
Sequential Quadratic Programming[23], for example. selection error when using Bayesian model selection.

The paper is organized as follows. In Section Il we deriviéor notational simplicity we assume, without loss of gener-
the new method for multiple-model discrimination. In Secality, that optimal model discrimination is invoked at time
tion 1l we extend this to Jump Markov Linear Systems. Istep zero. In many scenarios it may be useful to start optimal
section IV we demonstrate the multiple-model discrimioati discrimination at some later time, for example when there
approach in simulation using an aircraft fault detectioa-scis a high level of uncertainty about which model is the true
nario, and show empirically that the new method signifigantbne. In this case the prior probability of each model in Def. 2
reduces the probability of model selection error. Finalty, is replaced by the probability (dvelief stat¢ of each model
Section V we demonstrate the active estimation approach fyiven the observationg,... This belief state is generated on-
Jump Markov Linear Systems and show that the new methlike using a Multiple Model estimation scheme, for example

reduces the probability of losing the true mode sequence. [24], [25], [26], [27], [28].

Eafinition 1. We use subscript notation to denote the value of



p(y | H,,u)P(H,) Significant Bayes Risk

p(y | Hy,u)P(H,)

p(y |H1’U)P(H1)
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Fig. 1. Bayesian hypothesis selection between multiple models given an p(y |sz“)P(Hz)
observation y, a control input «, and a prior[22]. In general, Bayesian p(y | Hy,u)P(H,)

selection between multiple hypotheses yields a number of decision
regions in the space of possible observations; in each decision region a
particular hypothesis is most likely. If the observation y falls into set ®;
then the classifier selects H;. Even with Bayes optimal selection there
is a finite probability of error given by the Bayes Risk, denoted by the
shaded region.

vy

Fig. 2. Graph showing p(y|Ho,u), p(y|H1,w) and p(y|Hz2,u) for two
different choices of . In the upper figure, the predicted distributions
overlap significantly, leading to a large Bayes risk. In the lower figure,

In Section 11-B we define Bayesian model selection and tleedifferent selectio_n of u has separated the distributions, meaning that
probabilty of model selection effor. In Sectons [l-C kI y#ie e cheervalon s e made, he coret ol co be seictd it
we show that, while the probability of model selection errad error is very low.
cannot be evaluated in closed form, it can be upper bounded.
In our approach to solving the Optimal Model Discrimination
Problem (Def. 2) we therefore minimize an upper bound dpince the Bayes Risk is the probability of error when using

the model selection error. The approach is described irildetie optimal classifier, we would like to optimize our control
in Section II-E. inputs to the system to minimize this measure. The effect of

input choice on the Bayes Risk is illustrated in Figure 2.

B. Hypothesis Selection and Bayes Risk

Bayesian hypothesis selection between an arbitrary numfer Bounding the Bayes Risk for Two Models

of models, given a general vector of observatiGhsand a  The Bayes Risk is unsuitable as an optimization criterion,
vector of control inputdU, can be expressed as follows:  since the finite integral in (3) cannot, in general, be evaidia
in closed form. It is, however, possible to bound the Bayes
SelectH; wherei = argmax; P(H;|Y, ). Risk in closed form. For the special case of two mod&lsand
H,, theBattacharyya Boun{P?2] applies, and we show in this
section that this leads to a quadratic cost function for rhode
SelectH; wherei = arg max; p(Y|H;, U) P(H;). discrimination. In Section 1I-D we develop a novel boundttha
applies to more than two models.
The termP(H;) represents the prior probability of modgl The Battacharyya Bound is given by the integral:
As shown in Figure 1, Bayesian selection yields a number
of decision regionsR;, in which H; is the most probable P(error) < P(Ho)%P(Hl)%/\/p(Y|H0)p(Y|H1)dY.
hypothesis: (4)
o _ . If the distributions are Gaussian such théY|H,) has mean
Ri = {Ylp(H:, Y|U) > p(Hi, Y|U) VL # i} @ 1(0) and varianceX(0), and p(Y|H;) has meanu(1) and
Model i is selected if the observatiol falls in region varianceX(1), the above value can be calculated analytically
R;. This Bayesian selection rule minimizes the likelihood db give:
selecting an incorrect model given the available infororati . .
As shown in Figure 1, the Bayesian optimal classifier has a P(error) < P(Hy)? P(H1)? exp{—k},
finite probability of selecting the incorrect model, knows &\ here:
the Bayes RiskThe Bayes risk is given by: |

Using Bayes’ rule, this selection is equivalently given by:

Plerror) = 3 " P(Y € Ry, HilD) F = (1) — p(0)) [5(0) + S (u(1) — (0))
i i 1 ’ E(O)JQFE(U ’
= Z;P(Ye W;|H;, U)P(H;) RSO ©)

Since the logarithm is a monotonically increasing function
= ZZ/ p(Y[H;,U)P(H;)dY.  (3) the value ofz that optimizesf(z) is also the value that
e optimizesIn[f(z)]. We therefore take the logarithm of the



Battacharyya bound for Gaussian distributions to yield théere, each term in the summation is the Bayes Risk between
following cost function: hypothesis and hypothesig. This can be written exactly as:

2(0)+X(1) _ _ . .
J :é In[P(Ho)P(H1)] — = In I~ | (P(Y € Ry, H;[U) + P(Y € §l‘ﬁuf‘lngU))

2 VIEOIED) /
R

— [ p(vE, U)P(H) Y + / p(Y|H;, U)P(H;)dY.

1 —
= 7 (k1) = u(0)) [£(0) + Z(1)] " (u(1) = p(0))- () ) R 12)
In Section II-E we use (6) to perform finite horizon contro] , . )
design for discrimination between two models. This use dye now define two region& 4 and¥is as follows:
;hehBattacharﬁ/ya Bou_nd i.n r(‘jngdel di?crimingtiqn is n_ovfed an Ra = {Y|p(H;,Y|U) > p(H;,Y|U)}
urthermore the criterion is different from existing critefor Rp = {Y|p(H;, Y|U) > p(H;, Y|U)}. (13)

optimal model discrimination that have been proposed bgroth _ N

authors. The most similar criterion is the Kullback-LeibleWe can relate these regions to the decision regibnand®;.
(KL) divergence, which was used by [18]. The KL diver+rom the definition of hypothesis selection given in Sectlen
gence from the distribution/(1(0), $(0)) to the distribution B, decision regiorit; is where the likelihood of hypothesis

N(u(1),%(1)) is given by: is greater than all other hypotheses:
sl + g0y - § R; = {¥|p(H:, Y|U) > p(Hi Y|U) VL #i}
2 \[ZO)]/ 2 2 R; = {Y[p(H;,Y|U) > p(H,,Y[U) VI#j}.  (14)
1 , _
+ 5 (u(1) = p(0)=(1) (1) = (0)), It is clear from (13) and (14) that the decision regions are

(7) subsets of the regioriR4 and g, such thatk; C %4 and
R; € Rp. We can therefore bound the 2-hypothesis Bayes

where N is the dimensionality of the distribution. The sym-Risk term in (12) as follows:

metrized’ KL divergence between two distributions is:

1 , 1 _ Y|H;, U)P(H;)dY / Y|H;,U)P(H;)dY <

Str(S(1)7IR(0) + 5tr(S(0) 1 8(1) - 2N /er p(YH U)PUHDAY + [ p(Y|H;, U)PUH;)AY <

+ (p(1) — w(0))'[Z(1) "+ 2(0) 1 (u(1) — p(0)). (8) / p(Y|H;, U)P(H;)dY + / p(Y|H;, U)P(H;)dY.
Clearly, both of these criteria are different from (6). Re Ra (15)
D. Bounding the Bayes Risk for Multiple Models Note that the union of the regiors, and s is the entire

ace ofY. Using the definitions in (13), we can therefore
ite the integrals in (15) as a single integral over therenti
space ofY:

In this section we introduce a new bound on the probabili?\kﬁ
of model selection error that applies to an arbitrary nundfer
models, or hypotheses.

Theorem 1. When performing hypothesis selection between a/

p(Y|Hy O)PUHAY + [ p(¥[H;, 0)P(H;)aY
an arbitrary number of hypotheses, for Gaussian observa-*® Ra

tion distributions such thap(Y|H;) = N(u(i),x(:)) and :/min{p(YlHi,U)P(Hi)ap(Y|HjaU)P(Hj)}dY. (16)
p(Y|H;) = N(u(j),2(j)), the Bayes Risk is upper bounded Y
as follows: We now use the following inequality[22]:
P(error) <> N " P(H;)* P(Hj)ze "0, (9) min{a, b} < a?b?, (17)
_ v which means that the integral ovéf can be bounded as
where: X follows:
S N NN/ . N1—1 N .
k(i) =7 (n(3) = p(@)" [260) + E(G)] (0(5) = u(@) /min{p(Y|Hi,U)P(Hi)ap(Yu{jvU)P(Hj)}dY
’E(i)gE(a‘)‘ Y
toh——e——. 10 < pH, %PH-%/ *(Y|H;, U)p2 (Y|H;,U)dY. (18
2 IS 2] < P(H;)> P(Hj) Yp (Y|H;, U)p> (Y| H;, U) (18)

Proof: The key idea is to express thehypothesis Bayes Risk Furthermore, if the distributions are Gaussian, such that
in terms of the Bayes Risk between pairs of hypotheses, ay;‘(q“Hi) = N(u(i),2(i)) and p(Y|H;) = N(u(5),2(5)),
then to bound the term for each pair in a manner analogoust@n this integral can be evaluated in closed form to give:
the Battacharyya bound. Thehypothesis Bayes Risk given

by (3) can be expressed in terms of hypothesis pairs as fellow / p% (Y|H;, U)p% (Y|H;,U)dY = e"“(i’j), (29)
Y
P(error) = ZZP(Y € Ry, H;|U) wherek(i, j) is defined in (10). We therefore have:
i i

= 3" S (P(Y € Ry, HU) + PY € Re, Hy{1)). (10) POCe Ry HlD) + POCE B, B50)
~ < P(H) P(H) e b0, (20)



which leads to a new upper bound on the probability of modelere [-], denotes the value at indexinto the vector, and
selection error: similarly [-], ; denotes the value at ind¢x ;) into the matrix.
1 1 Having definedu(l) and (1) for all /, the bound given in
AY 3 k(i) , "
P(error) < Z Z P(H;)*P(Hj)ze™™"7, (21) (9) provides an upper bound for the probability of error when
S using the entire sequence of observations from tinte time
wherek(i, j) is defined in (10). O h. We therefore use this bound as a cost function on the finite

We have therefore introduced a new upper bound on the progg_rlzon optimization formulation:

bility of model selection error between an arbitrary numbier J = Z Z p(Hi)%p(Hj)%efk(iyj)v (27)
models, which can be evaluated in closed form. Notice that in i j>i

the special case of only two hypoth_eses, the bound redyce%v}]oerek(i’j) is defined in (10).
the Battacharyya bound mentioned in Section 1I-C. We discus Given a madeH,, the system equations (1) are fully known
the properties of this bound in Appendix I. In Section II-E we, b ’

: - ence the distributiop(Y|H;,U) can be calculated for all
describe how the new bound can be used as an optimization .~ : : )

o . . . pplying the system equations (1) recursively we have:
criterion for finite horizon control design.

y-() = C()A() %0 + D(D)u;—1 +vr 1

E. Finite Horizon Formulation T—1 .
+CM)Y AT B, +w,).  (28)
v=0

In this section we pose the problem of model discrimination
between an arbitrary number of models as a finite horizon ) o ]
trajectory design problem, and show that it can be solveutusi USing (28) we can derive explicit expressions for the mean
Sequential Quadratic Programming (SQP)[23]. For the spect!(2) and covariance:(h) as defined in (25) and (26). First,
case of two models, the optimization problem can be solv8&fine:
using Quadratic Programming (QP) to global optimality. f=ny(p=1) +4q, (29)

1) A Tractable Cost Function for Model Discrimination: ynere:

Optimal Model Discrimination Problem (Def. 2) consists of

planning a finite sequence of inputs in order to minimize the 1<g<ny, 1<p<h pqel. (30)
probability of error. This form of planning is known &igite : .

horizon planning. In this case, if the horizon is of length Then following from (28):

we are concerned with a sequence of observatians. ., y; D] = ey = [C(Z)A(l)pioa) + D(l)up—1

and a sequence of inputg,...,u,_1. Since evaluation of

the probability of error is intractable, we instead minimiz p—1

an upper bound on the probability of error, described in +C(h)ZA(l)”71B(l)u7] (31)
Section II-D. In this section we describe how this bound can =0 a

be used in a finite-horizon context. We define: Defining g = n,(r — 1) + s in a similar manner to (29), the

! H H H .
Y = [ v vo' ...y } expression for the covariance is:

U=[u w' ... wt']. (22) [Z0);, = RO)p.r) + COALPV DAL CQ)]

q,s

We assume that model selection is carried out by a Bayes

optimal classifier that makes its decision based on hall +

m—1
> COHADP DA Ve
~=0

observations within the horizon. Under the assumptions in (43;52)
Section II-A, y, is a normally distributed random variable
given a sequence of inputsand given a modelf;. We define wherem = min{p,r} and:
u-(1) and 2, (1) for time stepsr = 1,...,h and modelsH,
. R(l) p=r
such that: R(1)(p,r) = { (33)
p(y-|Hi, U) = N (- (1), 2i(1))- (23) 0 p#rm
Then the block vector of all observatiods = [y/,...,y,]’ The distribution ofY has two important properties:
is a vector of normally distributed random variables, gigen « The equation for the mean of the predicted distribution
sequence of inputs and a model. We defir{¢) and X(/) to of Y is linear in the control input&/.
be the mean and covariance of the vector of all observations The covariance of the predicted distribution %fis not
such that: a function of the control input®.
p(Y|H;, U) = N (u(1), 2(1)). (24) These properties mean that the multiple model criterion

in (27) has a tractable form, enabling it to be used in a
constrained optimization formulation. Furthermore, foie t

B , oy two-model case, these properties mean that the criterion in
pll) = [pa ()’ ()] (25)  (6) can be simplified to:

From the above definitions the distribution ¥{!) is given
by:

=0, = E[([Yli = [u(@]:) ([Y]; - [u(l)]j)!Hl}- (26) " = —(u(1) = p(0)) [£(0) + Z(1)] " (u(1) — (0)). (34)



Since bothu(1) and x(0) are linear functions olU, (34) is Ezgcfifn ACTIVEMULTIPLEMODELMAIN (H.p(F(),h) returns

quadratic in the control inputdl. This means that the two-| 1) For each modeH;, calculate the meap(h) as a linear function
model discrimination problem subject to linear constrin of the control inputs, according to (31).

2)  For eachH; calculate the covariancE(h) according to (32).

(Section II-E.2) can be solved using Quadratic Programming3) Using SQP, minimize oveng.;_1:

Remgrk 1. Since the covariange ma!tricEséO) and_Z(l) are ZZP(Hi)%P(Hj)%e*‘““’”, (36)
positive definite, the cost function given by (34) is a corgcay T G
funCt’,on of (u(1) — p(0)). BOth_ p(1) and p(0) are l’ne,ar wherek (s, j) is defined in (10), in terms qf(h) andX(h), subject
functions ofU, and hence (34) is also a concave function of  to:
the control inputdJ. This concavity makes (34) a particularly « Constraints on the expected state, for examplgl) <
tractable cost function for optimization, and guarantéed & émawt or /th—(l) ; Heg- ol inbuts. f -
global optimum can be found in bounded time [29]. » Constraints on the control iNputs, for exampie < rma-
2) Linear Constraints: A powerful aspect of the con- _ _ o .

. .. . . . . . TABLE |. AE-MM Algorithm for Optimal Discrimination between Multiple
strained finite horizon formulation is that optimal input se i ear Models.
guences can be found subject to hard constraints. This can be

used to model actuator saturation, for example, by comstigi

U < U < U The expected system state conditioneftending the error bound derived for discrimination betwe

mn T max- . . .

on a modelH; is a linear function of the control inputs:  different models, to time-varying systems, we create aetlos
form upper bound on the probability of the true mode sequence

being pruned. We then use a constrained finite horizon clontro
(35) design approach to minimize this bound, while ensuring that
a given control task is achieved.
Hence constraints on the expected system state of the form
E[x,|H)] = goal Of Xpmin < E[x;|Hj] < X4, are linear A. Problem Statement
constraints in the control inputs. By imposing such coristsa In this section we define a Jump Markov Linear System

we can. . _ _ (JMLS) and describe how approximate state estimation can
« Ensure that a certain task, defined in terms of the expecigsl carried out for such systems. The continuous dynamics of

T—1
Elx|H] = A()"%0 + Y _ A(l)" 71 (B()uy).
j=0

system state, is fulfilled a JMLS M are defined by:
« Ensure that the expected system state stays within a ‘safe’
operating region or within a valid linearization region Xert1 = AXdr)Xer + B(Xar)ur +wr
« Ensure that the system state ends the experiment in the y.i1 = C(X4,7)X¢,r+1 + D(Xa,7)0r + v, (37)

same region as .'t started. ) ] ~ wherex, € "= is the continuous system state apd= R"v
Here, we have restricted our attention to linear cons$aing e the observations. The discrete system statemode

since these are straightforward to encode, and are guetante {1,...,|X4]} is a Markov chain that evolves according
to be convex; convexity simplifies the optimization problerg, 5 transition matrix” such that:

greatly. The general formulation, however, applies to imaar
constraints. P(Xd,r+1 = jlXa,r = 1) = [T (38)

3) SummaryWe have shown that the problem of designinghe yariablesw, € %" and . € R are zero-mean
a sequence of optimal control inputs to discriminate betwegs; ssian white noise processes with covariaglie, ,)
an arbitrary number of models can be posed as a finite-horizgy R(x4.), respectively. The initial state distribution
trajectory design problem. The resulting AE-MM algorithmp(xcmxd o) is defined such thap(xqo) = p(xa0) and
summarized in Table |, works by minimizing a novel, closeg(xc’0|xd ’0) ~ N (%0(%a,0), V(Xd0)), and is uncorrelated
form upper bound on the probability of model selection errafith the noise variables. In the JMLS formulation, as opplose
and imposing constraints on the expected system state gighe multiple-model formulation, switching between misde
control inputs to ensure that a defined task is fulfilled ared this 5j10wed: for example stochastic jumps can represent com-
actuator limits are not violated. In this sense, the apgroses ponent failures.
constraints to perform control, while optimizing with reda = \we define the problem of hybrid estimation in a JMLS as
to estimation. The optimization can be solved using exstifpat of estimatingp(x..., Xa., [y1.r, uor—1), the probability
methods such as Sequential Quadratic Programmming. In figipution of the hybrid discrete-continuous state, dien
case of discrimination between two models, the optimizatiqioned on the sequence of all observations and control sput

can be solved using Quadratic Programming; furthermore s probability can be written as a sum over all possible enod
this case the global optimum can be found in finite time.  gequences that end in the madg. :

[1l. ACTIVE ESTIMATION FOR JUMP MARKOV LINEAR P(Xe,rs Xd,7[Y1rs Woir—1)
SYSTEMS = Z p(XC,TaXd,O:TflaXd,T|y1:TauO:Tfl)- (39)
We now extend the multiple-model discrimination method *d,0:7—1

to develop an active estimation capability for Jump MarkoZach summand can be further expanded as a product of the
Linear Systems, which we call the AE-JMLS algorithm. Byosterior probability of the discrete mode sequexgg., and



the posterior distribution over the continuous state, dated Xdo X n1

on this mode sequence:

P(Xc,r, Xd,0:7—1, xd,'r|y1:7'a u-O:'r—l)

= P(Xd,0:7|}’1:r, u0:771)p(xc,r|xd70:‘rv Yi:r, uO:‘rfl)- (40)

For a given mode sequence, the system dynamics are fully
known, although time-varying. This means that the proligbil
distribution p(x. r|X4,0:r—1,¥1:7, Uo:r—1) Can be calculated
exactly using the Kalman Filter recursion[30]. The proliabi

of a given mode sequenpéxy o.-—1|y1:r, Uo.-—1) €an also be
calculated using the residuals in the Kalman filter equatitm
principle, therefore, it is possible to calculate the dlisttion

over the hybrid state(x.,r, X4, |y1:7, Uo.r—1) €xactly, yield-

ing a sum-of-Gaussians expression. In practice, howevisr, t O

mode sequences
K mode sequences

w0

Enumeration of all possible

exact hybrid state estimation is infeasible since the number
of mode sequences; ;.- grows exponentially with time and

with the number of possible modes. u
]

B. Approximate Hyb“d Estimation Fig. 3. Pruning approach to approximate hybrid estimation. At time
A Iarge number of methods have been proposed that malgp 0. the estimator is tracking & = 4 distinct mode sequences. We

he hvbrid . . bl ble b . . assume that at time step h, the posterior probabilities of all possible

the hybri lgstlmanon problem tractable by apprommatmgode sequences x4.0.,—1 are calculated. The top K sequences are

the probabilityp(x. -, X4, - |[y1.7, Uo:r—1) [4], [28], [31]. One retained, while the remaining sequences are pruned. The true mode

common approach is to discard mode sequences that ha#&ence is shown in bold.

low posterior probability(x4.0.7|y1:7, Wo:r—1). Suchpruning

approaches typically ensure that a fixed number of moggyrginalize over the observations., and the true mode

trajectories are tracked. In this paper, we assume thatrnyu sequence, since both are unknown at time step
approach is used so th& individual mode sequences are

tracked,; this is called{-best hybrid estimatianVhile pruning  P(prune|ug.p—1) = Z / P(prunelyi.n, 0o:h—1)
is usually carried out at every time step, for the purposes Xd.omo1* I Yih

of finite-horizon control design, we assume that pruning is s p(y1:0)%a,00n—1 7)Y 1:nD(Xa.0:n—17)-
carried out at the end of the control horizon; this is disedss (42)

in Section VII. Figure 3 shows the pruning process for a ti . . .
horizon of h time steps ands = 4 tracked mode sequencersT.\(R/e now look at the two terms in the integrand. First, the ob-

It is possible for the true mode sequence to be discardfeee({ \g;'gg Zro?iiggil(t)ﬁ(gfli%g?{%ﬁ;;n) ;ﬁg :)er(:gi(::l:ilsrt]eg_umng
in this pruning process. If this occurs, the hybrid estimat P PP P |

typically diverges and the approximated state distributio ?_see Section IlI-C for details), and will yield a Gaussiandu
o -tion of y1.;,. Second, we can evaluat prune|yi.n, Up.p—1),

longer resembles the true distribution. The goal of active . . : L L .
2 ) . s In principle, since it is unity if condition(41) holds and
estimation for JMLS is to use control inputs to minimize the

robability of the true mode sequence beind pruned Zero otherwise; however this involves calculating the g@ost
P y q gp ' rior probability of every possible mode sequence given the

Definition 3. At time step0, given a JMLSM , the Active observationsy;.;,. Note also that this will be a discontinuous
Hybrid Estimation Problentonsists of designing a finite se-function ofy.,, moreover calculating even the location of the
quence of control inputsy.;,_, that minimizes the probability discontinuities is non-trivial. Hence the integral (42)nnat

of K -best hybrid estimation pruning (i.e. discarding) the truge evaluated in closed form. In the same spirit as the AE-
mode sequence; o.,—1*. MM approach developed in Section I, we therefore derive
As in Section Il we assume that Active Hybrid Estimatio@ tractableupper boundon the probability of pruning the

is invoked at time step zero, without loss of generality. Thgue mode sequence. We then approximate the Active Hybrid
true mode sequence is pruned at time stépand only if its  Estimation Problem (Def. 3) by minimizing this bound instea
posterior probability is not in the tofi” posteriors. We denote of the true probability of pruning.

this eventprune:

C. Bounding the Probability of Pruning

prune <= {p(xdjozh’l (Y1 Won—1) < , In this section we extend the bound (9) to create a bound
P(Xa,0:n-1(1)|y 1, Gon—1) for K or morei}. (41) on the probability of approximate hybrid estimation prugin

We must find the control inputsy.;,—; that minimize the the true mode sequence.

probability of the evenprune. We write this probability as Theorem 2. Denote the number of possible mode sequences
P(prune|ug.,—1). In order to calculate this value, we must, o.,—1 a@sNseqs. Enumerate all mode sequences.,,—1(%)



fori =1,..., Nseqs. Define:

Y=[v v i |
U= [ u; uj uy,_ ]/
(i) = [pa (i), ... un (i)' where p; (i) = E[Y|xq,0.—1(i)]
X0, = E[([Y]f — (@] ) ([Y]g = [1(2)]g) |Xd=0:h71(i)}
(43)
Then:
P(prunelug.p—1)
<33 Plxaon1 (i) Plxaon-1(7) FeH0D), (ad)

i j>i
wherek(i, j) is defined in(10) in terms ofu(-) andX(-).

Proof: The following implication holds:

{3i p(xa,0:n—1"[y1:0, Wo:n—1) < P(Xd,0:0—1(0)|Y1:0, Voin—1) }
—{p(xa,0n—1"[y1:n, W0:h—1) < P(Xa,0:0—1(3)|[¥1:, Wo:n—1)
for K or morei}

< prune. (45)

Now consider each mode sequence as a hypothesis |n

Defining g = n,(r — 1) + s in the same manner as (48), the
expression for the covariance is:

900, = [RO%0,) 0 HCMPI(HAMU)

Vet s H>C<xw—l<i>>'] _s

w=Il+1 q,5
(50)
wherem = min{p,r} and:
R(xq,) p=
Rixar)(p.r) = 4 1047 DT e
0 D FET.

We use the following notation regarding matrix products.
Repeated right matrix products are denoted:

(HA X4.i ) = A(x4,1)AXd,2), -, A(Xdp—1)A(Xap),

(52)

the sense of Bayesian hypothesis selection, as in Swdtile repeated left matrix products are denoted:

tion 1I-B. Then the event{p(x4o:n—1*|y1:h,U0:n—1) <

P(Xd,0:h—1(%)|y1:n, Wo:n—1) fOr anyz} is identical to the event
that Bayesian hypothesis selection makes an error, denote

error. From (45) we haverune — error, and it follows
that:

P(prunelug.p—1) < P(error). (46)
Combining this with Theorem 1 we have:
P(prunelug:p—1) < P(error)
< ZZP(Xd,o;h—1(i )2 P(xq.0:n-1(j))2e 0D | (47)

i j>i

which completes the proof.

P

gA(xd,i) H) = A(xap)A(Xdp-1),- .-,

i=1

A(Xd72)A(Xd,1).

(53)

In principle, therefore, we can use the bound in (44) as an
optimization criterion for active hybrid estimation. Thisin
contrast to the exact value (42), which cannot be evaluated i
closed form.

However the new criterion requires evaluatieif|X,;|?"),
so even for a relatively short time horizon and a modest
number of possible modes, evaluating (44) is intractabsie. |
Section 1lI-D we overcome this problem using a principled
bound relaxation approach.

U D. Considering a Subset of Possible Mode Sequences

The mean and covariance expressions defined in (43) ca¥Ve aim to find a looser bound on the probability of pruning
be calculated explicitly in terms of the control inputs wpsinthat requires the evaluation of a fixed number of terms. In
repeated application of the Kalman Filter prediction egurst. ~ deriving the looser bound, we make use of the Minkowski’s
We first define: Inequality[32]:

Lemma 1 (Minkowski's Inequality). For all

positive definite; andy;:

EiJrE]‘ |
—2Z >
VIZi|[Z5]

Theorem 3. Define:

Fi;(U) = P(H;)2 P(H;)%e

f=ny(p—1)+¢, wherel<g<n, 1<p<h p,q€Z. Symmetric,

(48)
Then the mean is given by:

(1] = lup(D)]g

1

, Gy = P(H;)2P(H;)%.
(54)

—k(i,7)

Then for any set of mode sequences

q. P(prune) < Z Z U) + Z Z Gij.

(49) i€8 j>i,5€8 i¢S j>i,5¢S

(55)



Proof: Following from Lemma 1, and the definition in (10),E. Summary

itis clear thatk(i, j) > 0, and hencez;; > Fi; (U)'_ We write  The AE-JMLS algorithm is summarized in Table II. The al-
the bound on the probability of pruning (42) as: gorithm works in parallel with approximate hybrid estinuat;
which calculates the probability of each of thetracked mode

P(prune) < ZZFZ'J'(U)' (56) sequences. Starting from these sequences, AE-JMLS then
v enumerates théS| most likely future mode sequences over
The inequality (55) follows from (56).  the horizon using best-first search. AE-JMLS forms an upper

bound on the probability of approximate hybrid estimation
Note that the(?;; terms in (55) do not depend on the controjosing the true mode sequence, which involves only |tfe
inputs U and hence can be dropped from the cost functiomost likely future sequences. AE-JMLS minimizes this upper
By replacing F;;(U) terms in (56) withG;; terms, we have hound subject to constraints on the expected system statg us
obtained a looser upper bound on the probability of prunirgequential Quadratic Programming. This yields an optithize
the true mode sequence with fewer terisiss the set of mode sequence of control inputs that is app“ed to the Systen‘iﬁwhi

sequences for which the full bound is calculated as a functiybrid estimation continues to estimate the hybrid state.
of U. We would like the tightest such bound for a given size

of S. We achieve this as follows. _
The difference between the boun@;; and the bound f“”Ct'O”) ACTIVEHYBRIDMAIN(M.P(:),Fh) - retums
N uO:hfl*

Fi;(U) is largest when the control inputd¥ drive the | 1) perform K-best hybrid estimation. Calculate the probabilities |of

value of Fij([[j) to zero, at which point the difference is the K tracked mode sequences, as well as the distribution over the
N1 N\ o continuous state conditioned on each mode sequence.
P(HZ)_z P(HJ_) 2. Since we do not have_ knOWIe.dgerWhen 2) Starting from theK tracked mode sequences, enumerate|fie
choosing which mode sequences to includeSinve assume most likely future mode sequences over the horizon ., h using
this worst casedifference betweert;; and F;;. In order to 3 It;eSt-fItrrs]t Seafch-b 4o the orabability of oraning
- : : ; : orm the upper bound on the probability of pruning the matle
de the tightest bound of the form (_55_)' we therefore include sequence involving only terms corresponding to|tiiemost likely
in .S the mode sequences that maximize: future mode sequences:
1 1 -
_ 1 1 J=Y" > P(H)2P(Hj)ze F0), (58)
= )2 )2 J
L Z Z P(Hl) P(H7) ° (57) i€S j>i,jES
i€S j>i,j€S

. . o . 4) Using Sequential Quadratic Programming, minimize (5#)jexct
Intuitively, this means that optimization will concentabn to constraints on the expected system state and controtsirtpu

reducing terms where the control inputs can have the gteates ~ find the optimal control sequenaey., ,*.
effect onp(prune), and will ignore terms that do not con- °) Eﬁscsut;eom'mal control sequenee;,—* while estimating hy-
tribute significantly. It can be seen that in order to maxiniz
L, the setS must be chosen to contain hypotheses with thﬁABLE Il. AE-JMLS for Active Hybrid Estimation algorithm with JMLS.
greatest probability?( H;); replacing anyP(H;) value with a
lower one can only reduce, or have no effect on, terms in the
summation (57).

Although we consider only théS| mode sequences with
highest prior probabilities in the process of control desig
for Active Hybrid Estimation, this is not to say that we In this section we demonstrate the AE-MM algorithm using
are ignoring available observation data. Fiysyrune) does an aircraft fault detection scenario. We use a discrete time
not, by definition, depend on the observations after tin@Pproximation to the longitudinal aircraft dynamics, bneed
step zero. Second, the observations after time step aero about the trim state withtA¢ = 0.5s. Here, the state of the
used in estimation (rather than control design), when th&ystem consists of the vertical velocity, the horizontdbuity,
become available. Third, observations made before0 are the pitch rate, the pitch angle and the altitude. The observe
incorporated into the prior probabilitigg H;). output of the system is taken to be the pitch rétand the

In this section we have shown how to derive a tractabkertical velocityV,. The input is denoted, and is taken to
upper bound on the probability of pruning the true modee the requested elevator angle. We assume that the elevator
sequence that involves a fixed numb&f of mode sequencesactuator saturates &t0.25rad.
for which the observation statistics (49) and (50) need to beln the multiple-model selection task, we must determine
calculated. By choosing thes| most likely mode sequenceswhich model H (i) is most likely. Under modelH;, the
we achieve the tightest such bound. Choosing fhenode se- System is described byA(i),B(i),C(i),D(i),Q(i), k(i) }. For
quences with highest prioes; 0., is a challenging problem the aircraft example, we consider three single-point fai
in itself given an exponential number of possible sequencée pitch rate sensor may fail, the vertical velocity semsay
Prior work has, however, shown that this can be posed fadl, or the elevator actuator may fail. This gives four misde
a tree search problem[7]. This enables the H&$t mode e Hy: Nominal (no faults)
sequences to be found efficiently using a best-first informede H;: Faulty pitch rate sensor
search approach[33]. For the sake of brevity, we refer thee H,: Faulty vertical velocity sensor
interested reader to [7] for details of this approach. o Hj: Faulty elevator actuator

IV. SIMULATION RESULTS. MULTIPLE-MODEL
DISCRIMINATION
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The model parameters fdi, are: The optimized control input yields a batch error probailit
of 0.0003 and a sequential error probability 6f0004. The

0.9985  0.1950 0 —0.161 0 bang-bangnature of the optimized control input highlights
—0.0325  0.8405 3.87 0 0 the fact that by optimizing up against hard constraints the
A(0) = 0.01 —0.0505 0.7855 0 0 discrimination power of the input signal can be much greater
0.0 0 0.5 1.0 0 than a power-bounded auxiliary signal. This particulausoh
L 0.5 0 0 , 0 1.0 took 58.5s to generate, of whicl30.7s was used to generate
0.005 0 1 the necessary covariance matrices and of whit8s was
—0.09 0 0 0 used to perform the nonlinear optimization using Matlab’s
B(0)=| —0.58 coy=]1 0 D(0) = { 0 } f mi ncon function.
0.0 0 0
| 0.0 0 0 108

(59)

In the case offf; and H,, the C matrix is modified so th:
the sensor reading is zero mean white noise. In the ca
Hs, the B matrix is modified so that the elevator exerts
control effort. In all models, the process and observatioisa o | |
matrices are given by) = diag([0.01 0.01 0.01 0.01 0.1]) 0 s 1 5
and R = diag([0.01 0.01]), while the initial state distributic

is given byzo =[0 0 — 0.1 0 100]" and P = Q. Consister 03 ‘ ‘
with a multiple-model fault detection framework, we assi N A B T
that the system matricelsd, B, C, D, Q, R} are fully knowr
for each of the possible faults, and that the true model gtg
indefinitely. In other words, in this section we do not al
switching between the different models; switching dyna B P R
are considered in Section II. 0o 5 _ 0 5

In each of the following discrimination tasks we con e

the system by constraining the expected state, conditionedFig. 4. Discrimination-optimized input design for aircraft flight envelope
nominal operation. We evaluate the effiacy of the AE-MN® 7%, EXpeced it of arvaf gven nomine cperstor
approach in terms of the reduction in the probability of Modaiscriminates between the different models while ensuring that in the
selection error achieved by using the discrimination+opti nominal case, the aircraft altitude remains between 98 and 102m. The

. e optimized control input yields a batch error probability of 0.0003 and a
sequ%nce. There are two different error probabilities tat sequential error probability of 0.0004,
consider:

1) Batch Error Probability This error probability is based
on the assumption that Bayesian model selectio
carried out based on all the observations over the €
horizon. This value is calculated in closed form.

2) Sequential Error Probability This is the probability o
a sequential multiple-model estimation scheme ma
a model selection error. This probability is estimatec
carrying out a large number of simulations.

As discussed in Section VII AE-MM minimizes an up|
bound on the batch error probability although most prat
multiple-model implementations are sequential. Nevéets
the results provided here show that the new approach dr.
ically reduces the sequential error probability also.

Expected Altitude(m)

01N N 4

0N - . ]

Elevator Angle(rad)

024X bt RESRRESEEEEEEREEE S o]

6—g_ | —O— ElygH,]
4 - - Ely,H,]

o9 and

Pitch Rate(rad/s)
Velocity (m/s)

Pitch Rate(rad/s)
Velocity (m/s)

Pitch Rate(rad/s)
Velocity (m/s)

o 4
Velocity (m/s)

Pitch Rate(rad/s)

A. Altitude Envelope

Time(s)

Figure 4 and Figure 5 show results from a fault detec
scenario where the aircraft is constrained to remain withHig. 5. Expected observations for aircraft flight envelope scenario with

a fIight enve|0pe around an altitude ®00m. The elevator optimized control input. The top plot shows the nominal case, where
) there are no faults. In the second and third plots, the pitch rate sensor

angle is constrained to be at m@sk5rad in magnitude. The and vertical velocity sensors are faulty, respectively. In the bottom plot,

prior probabilities of models, through Hs are 0.65, 0.1, the elevator actuator is faulty. The optimized control input ensures that

0.05 and 0.2 respectively. We assume that these priors ha\t}E observation sequences in each case are as different as possible, in
. . . . order to minimize the probability of model selection error.

been generated by a multiple-model estimator running uib unt

time 0.
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B. Manually Generated Sequence

In order to identify the longitudinal dynamics of an airdraf
pilots typically use a doublet control input[34]. Figure 6
shows such a control input sequence, with the same actuato g
limits as for the optimized control sequence. This sequence
yields a batch error probability 08.0269 and a sequential
error probability 0f0.0258. Hence the optimized sequence in
Figure 4 has significantly greater discrimination powemtha
the manually generated sequence.

Elevator Angle(

0.3

0.2

Time(s)
0.1 . . . .
Fig. 7. Typical control sequence with added Pseudo-Random Binary
auxiliary signal. This sequence yields a batch error probability of 0.3360
and a sequential error probability of 0.3406.

Elevator Angle(rad)
o

to discrimination yields a batch error probability 6f0006
and a sequential error probability 6f0001. Optimizing with
respect to fuel yields a batch error probability®1914 and

a sequential error probability di.1833. Hence a dramatic
improvement in fault detection can be achieved by using
control inputs designed for model discrimination, ratheart
those designed to optimize some other criterion and emmudpyi

Time(s)

Fig. 6. Typical manually generated identification sequence. This doublet
form is used by pilots to perform aircraft system identification. This
sequence yields a batch error probability of 0.0269 and a sequential
error probability of 0.0258.

C. Auxiliary Signal

A number of existing approaches to control design
discrimination and model identification add a low pow
auxiliary signal to the nominal control sequence[16], [1
[19]. The power of the signal is small so that the effect on
system state is small. A typical approach to auxiliary sig
design uses a Pseudo-Random Binary Signal (PRBS)[35]

Figure 7 shows an altitude-hold control signal with
typical PRBS auxiliary signal added. The PRBS signal v
constrained to have a maximum elevator angle.of in order
to ensure that the aircraft altitude did not deviate sigaiftty
from 100m. Averaged over a number of randomly-genera
signals, the resulting batch error probability was8455, and
the sequential error probability wa$.3510, which is far

worse than the values obtained using the new discrimina..

approach.

D. Altitude Change Maneuver

only passive model selection. This particular solutionktoo
51.4s to generate, of whicl30.9s was spent calculating the
necessary covariances agf.5s was spent performing the
nonlinear optimization.

Expected Altitude

Elevator Angle(rad)

Time(s)

Fig. 8. Discrimination-optimal and fuel-optimal control design for altitude
change maneuver. The discrimination-optimal sequence gives a batch
error probability of 0.0006 and a sequential error probability of 0.0001,
while the fuel-optimal sequence gives a batch error probability of 0.1914
and a sequential error probability of 0.1833.

The AE-MM algorithm can use constraints to ensure that a

given control task is performed, while optimizing with resp

to discrimination. This is demonstrated in Figure 8, where V.- SIMULATIONS RESULTS JMLS DISCRIMINATION
the aircraft carries out a maneuver that changes its adtitud In this section we demonstrate the AE-JMLS algorithm in
from 100m to 120m, conditioned on the elevator actuatosimulation. We consider the aircraft described in Sectign |

being functional. The discrimination-optimal control segce

except we now model the system as a JMLS with the following

is compared to the fuel-optimal one. Optimizing with regpeeodes:



o Mode 1: Nominal (no faults)
o Mode 2: Faulty pitch rate sensor

115

110

12

T
—e— Discrimination Optimal
—=e-— Fuel Optimal

« Mode 3: Faulty vertical velocity sensor
o Mode 4: Faulty elevator actuator

Expected Altitude(m)

These modes are the same as the models described ir ; :
tion IV. The key difference is that the JMLS model explici %0 5 10 15
models stochastic jumps between the modes; stochastics;j
represent component failures or recoveries from failutee
transition probability matrix is:

0.97 0.01 0.01 0.01
0.0 1.0 00 0.0

T=1 00 00 10 00 |- (60)

00 00 00 1.0 04 ; s

Time(s)

Elevator Angle(rad)

Notice that once a fault occurs, it persists indefinitelyeThFig- 9. Active hybrid estimation for altitude change maneuver with JMLS
. . . . . aircraft model. The active estimation sequence yields a probability of
initial belief state is uniform across the four discrete ®d losing the correct mode sequence of 0.0570 and a probability of MAP
As in Section IV-D we constrain the expected system stategde sequence error of 0.1540. Optimizing with respect to fuel yields a
conditioned on nominal operation, to make the aircraﬁy:arprobability of losing the correct mode sequence of 0.0970 and a MAP

. mode sequence error probability of 0.3040.
out an altitude change maneuver. q P Y

Given the designed control sequence we simulate the JMLS
aircraft model and carry out approximate hybrid estimatsn VI. CONCLUSION
described in Section IlI-A. Hybrid estimation is sequeiptia This paper introduced a novel method for active state esti-
and at every time step mode sequences that are not in thation in Jump Markov Linear Systems. The method designs
20 most likely are discarded. While in designing the contrdinite sequences of control inputs that reduce the proligbili
sequence we assume that sequences are discarded at theofpdining the true mode sequence while ensuring that a given
of the planning horizon, we evaluate the new control desigontrol task is achieved. We first presented a method for
approach in terms of the benefits affordedémuentiahybrid constrained optimal discrimination between a finite number
estimation, since this is the most common implementatibe. Tof linear dynamics systems. By extending this approach we
two metrics used are: then derived a tractable active hybrid estimation method.
1) Probability of discarding the true mode sequeritheis is Simulation results shpwed that .the hew method_ significantly
. . . . reduces the probability of hybrid estimation losing theetru
estimated by carrying out a large number of simulations
X mode sequence.
and recording occurrences of true mode sequence loss.
2) Probability of Maximum A Posteriori (MAP) mode se- VIl. DISCUSSION

quence estimation e_rroCorrectIy estimating the MAP In the derivation of the new methods we assumed that both
mode sequence is important for control, in particular,

This value is agai ; mfodel selection and mode sequence pruning are carried out at
gain estimated through a large numbert%e end of the finite horizon control se ther th t
simulations. : : -quence, rather than a
every time step. However in most Multiple Model and hybrid
The control design algorithm considered theriori most estimation schemes, selection occurs at every time stege Wh
likely 10 sequences in the sét as defined in (44). The ele-it would be possible, and in fact simpler, to formulate the
vator angle was constrained to have a maximum magnitudecoitrol design problem for one time step, we did not do so for
0.25rad. Figure 9 shows the designed active hybrid estimatidwo reasons. First, in the discrete-time formulation, inngna
control input, as well as the fuel-optimal sequence, forpam systems the effect of control inputs at timés not manifested
ison. Active hybrid estimation yields a probability of logithe in the observations until some time after+ 1. Hence a
correct mode sequence 6f0570 and a probability of MAP one-step design approach will be severely limited. Second,
mode sequence error 0f1540. Optimizing with respect to by constraining the system state over a long horizon, the
fuel yields a probability of losing the correct mode sequenoptimization has much greater latitude in designing a péuler
of 0.0970 and a MAP mode sequence error probability adequence for the purposes of estimation; the system state ca
0.3040. Again, a significant improvement in fault detectiorbe driven far from its initial value, while being brought lac
can be achieved by using control inputs designed for modsel its goal value by the end of the time horizon. Hence by
discrimination, rather than those designed to optimize esornonsidering the probability of pruning over a horizon, eath
other criterion and employing only passive hybrid estiorti than over a single time step, the approach yields sequemaes t
This solution took269.7s to generate, of which.02s was are more powerful with regard to discrimination. Furtherejo
spent finding thea priori most likely 10 sequences6.3s we provided empirical results that show that the new methods
was spent calculating the necessary covariances,182ds do indeed reduce the probability of error when a sequential
was spent carrying out the nonlinear optimization. estimation method is employed.
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1) Randomly generateM models. Each model H; has a prior -
probability p(H;), a meanu(i) and a covariance:(i) for the i ;%A IS
observation distribution. a

2) Evaluate upper bound on error probabilitf.he upper bound (9
is evaluated for the generated model set. N

3) Simulate observationsThe true model is chosen at random S I 4
according to the prior distributiop(H;). Then an observation N
y is drawn from the probability distributiotV (u(3), X(3)).

o

w
© 10" & q
4)  Select most likely modelThe probabilityp(H;|y) is evaluated %
for each H;, and the most likely model is identified. S ool & o B
5) Record errors.If the most likely model is not the true mode], a o °§o ° J°
record the selection as an error. 107 ° 8; © Oiin o 8° 8
6) Repeat and calculate error probabilitySteps 1 through 5 are o ?%3500% °
repeated a large number of times. The probability of mogdel 107 ° g 80900, Oogoo o° 1
selection error is approximated as the fraction of errocended. % o @
10°° 000 E
TABLE lIl. Experimental process for analyzing tightness of bound on 0 0 20 0w 100 120 140
probability of Multiple Model selection error. Average Distance between Observation Means
Fig. 10. Tightness of new upper bound on the probability of Multiple
APPENDIX | Model selection error. Here there are 5 models, with randomly generated

observation means. The true probability of error is estimated using a
BOUND TIGHTNESSANALYSIS large number of simulations. The bound is not particularly tight, but
follows the same trend as the probability of error.

We now discuss some properties of the bound on multiple
model selection error in (9). In the AE-MM algorithm we
minimize this bound in order to minimize the probability
of model selection error. We do not prove analytically that
designing control inputs to reduce this upper bound nedgssa ,
reduces the probability of model selection error. Insteael, \/
motivate the use of an upper bound minimization approach in
three ways. First, note that the bound (9) is lower-bounded
by zero. Driving the bound to zero will trivially reduce the T B v
probability of error (unless the probability of error waseady Number of Hypotheses
zero). Second, we showed empirically in Section IV Withig. 11. Ratio of new upper bound to the probability of Multiple Model
a fault detection scenario that minimizing the upper boursdlection error.
does, indeed, minimize the probability of error. Finallg, i
this section, we analyze the tightness of the bound and show
empirically that the bound follows the same trend as the true
probability of error, in randomly generated instances. [1] R. Dearden and D. Clancy, “Particle filters for real-tifilt detection

. . . . in planetary rovers,” ifProceedings of the 13th International Workshop
For the empirical tightness analysis, we use the process in Principles of Diagnosis (DX02May 2002, pp. 1-6.

Table Ill. The observations in this case are scalar. Figilre 1j2] L. Blackmore, S. Funiak, and B. C. Williams, “Combinintpshastic and
shows the upper bound and the true probability of error for greedy search in hybrid estimation,” froc. 20th National Conference

_ : on Artificial Intelligence (AAAIOS)Pittsburgh, PA, 2005.
M = 5, where M is the number of hypotheses, and a‘[3] V. Pavlovic, J. Rehg, T.-J. Cham, and K. Murphy, “A dynanBayesian

variety of randomly generated mean valyeg). Here the network approach to figure tracking using learned dynamidetsd’ in
true probability of error was estimated usih@® Monte Carlo Proceedings of ICCV1999.

simulations. To aid visualization, in this case we have fixed S: M- Oh, J. M. Rehg, T. Balch, and F. Dallaert, “Data-éivMCMC
for learning and inference in switching linear dynamic eyss$,” in

¥(i) and p(H;). The z-axis of Figure 10 is the average Proc. 20th National Conference on Artificial Intelligenc@AAI-2005)
Euclidean distance between the observation means; we €hoos Pittsburgh, PA, 2005.

; ; At ; ; [5] U. Lerner and R. Parr, “Inference in hybrid networks: ®tetical limits
this measure to enable visualization on a Smgle flgure' and practical algorithms,” iffroceedings of the 17th Annual Conference

Figure 10 shows that the bound is not particularly tight. on Uncertainty in Artificial Intelligence (UAI-01)Seattle, Washington,
This is not surprising, since prior work has shown that the August 2001, pp. 310-318.

: . [6] C.B. Chang and M. Athans, “State estimation for discitstems with
Battacharyya Bound is relatively loose[22], and the newrtzbu switching parametersf/EEE Transactions on Aerospace and Electronic

(9) is at least as loose as the Battacharyya Bound. The bound systemsvol. AES-14, pp. 418-424, May 1978.
does, however, follow the same trend as the true probabiflity [71 M. Hofbaur and B. C. Williams, “Mode estimation of probiitic

. .. L . hybrid systems,” inintl. Conf. on Hybrid Systems: Computation and
error. This is empirical motivation for using the bound as an o101 "\ay 2002,

optimization criterion in the place of the probability of@r.  [8] A. Doucet, S. Godsill, and C. Andrieu, “On sequential M®rCarlo
Figure 11 shows the ratio between the upper bound and the sampling methods for Bayesian filteringStatistics and Computing

- . vol. 10, no. 3, pp. 197-208, July 2000.
true probability of error as a function af/, the number of [9] U. Lerner, R. Parr, D. Koller, and G. Biswas, “Bayesianlfadetection

models. In this case all gi(), (i) andp(H;) are generated and diagnosis in dynamic systems,” Proc. of the 17th National

randomly. Figure 11 shows that the bound becomes less tight Conference on A. I.July 2000, pp. 531-537. [Online]. Available:
h b f dels i d that th lati . citeseer.nj.nec.com/lernerOObayesian.html

as the number of models increases, an a e rela 'Onﬁlﬂtﬁ) Y. Bar-Shalom and T. E. Fortmanfiracking and Data Association

is approximately linear afted = 4. Academic Press, 1988.

Ratio between bound and true p(err)
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