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Abstract— Switching Linear Dynamic Systems are convenient
models for systems that exhibit both continuous dynamics
and discrete mode changes. Estimating the hybrid discrete-
continuous state of these systems is important for control
and fault detection. Existing solutions for hybrid estimation
approximate the belief state by maintaining a subset of the
possible discrete mode sequences. This approximation can cause
the estimator to lose track of the true mode sequence when the
effects of discrete mode changes are subtle.

In this paper we present a method for active hybrid esti-
mation, where control inputs can be designed to discriminate
between possible mode sequences. By probing the system for the
purposes of estimation, such a sequence of control inputs can
greatly reduce the probability of losing the true mode sequence
compared to a nominal control sequence. Furthermore, by using
a constrained finite horizon optimization formulation, we are
able to guarantee that a given control task is achieved, while
optimally detecting the hybrid state.

I. INTRODUCTION

Stochastic hybrid discrete-continuous models have been
used to represent a large number of physical and biological
systems, from Mars rovers to dancing bees[1], [2], [3], [4]. In
these models, the system dynamics depend on which discrete
mode the system is in, and discrete mode transitions occur
stochastically. Typically the continuous and discrete state is
only partially observable, which means that estimation of the
hybrid system state is a challenging problem. However since
tasks such as robot fault detection and pilot intent recognition
can be posed as hybrid state estimation problems, it is a topic
of great interest.

Exact state estimation in such systems is, in general,
intractable[5]. A number of tractable algorithms have been
proposed that approximate the true belief state[6], [7], [8].
One common approach is to store a finite subset of the
possible discrete mode sequences[9], [10]. However, by
approximating the true belief state it is possible to lose track
of the true mode sequence, at which point the estimator
diverges. Previous work has highlighted this problem and
suggested a number of solutions[2], [11].

These approaches are ‘passive’ in the sense that they
attempt to do the best possible with the observations that
are made available during nominal operation. In many cases,
however, it is possible to to obtain a great deal more informa-
tion about the state of a hybrid system by issuing appropriate
control inputs. For example, in the case of detecting a fault

This work is supported by NASA Award NNA04CK91A
Lars Blackmore is a PhD student, Massachusetts Institute of Technology,

Cambridge, MA 02139. larsb@mit.edu
Senthooran Rajamanoharan is a PhD student, University of Cambridge,

UK. sr343@cam.ac.uk
Brian Williams is an associate professor, Massachusetts Institute of

Technology, Cambridge, MA 02139. williams@mit.edu

in a drive motor, a change in the motor dynamics will not be
apparent in the observations unless some effort is requested
from that motor.

In this paper we introduce an active hybrid estimation
approach that generates control inputs to minimize the prob-
ability of the estimator losing the true mode sequence. This
approach applies to Switching Linear Dynamic Systems; here
the system is described by a discrete-time stochastic linear
dynamic model whose parameters depend on the discrete
mode. The system switches at random between modes; the
discrete mode is governed by a Markov process. Switching
Linear Dynamic Systems are an important class of hybrid
discrete-continuous systems that have been used in a number
of applications, for example [3], [4].

Previous work designed control inputs to discriminate
between a finite set of linear dynamic models[12], [13], [14],
[15], [16], [17], [18], [19]. The approach presented in [19]
minimized a tractable upper bound on the probability of
model selection error, while constraining the control inputs
and expected system state to ensure that a control task
was achieved. In this paper, we extend this approach to
Switching Linear Dynamic Systems. The key insight is that
for a given mode trajectory, the system dynamics, although
time-varying, are fully known. By extending the bound
derived in [19] to time-varying systems, we can create a
tractable upper bound on the probability of the true mode
trajectory being pruned. In a similar manner to [19], we use
a constrained finite horizon control design approach to ensure
that a given control task is achieved, conditioned on nominal
system operation.

A finite horizon control approach such as this suffers
from the fact that the number of possible mode sequences
is exponential in the number of discrete modes and in the
length of the design horizon. In practice this means that an
active hybrid estimation approach can only consider a subset
of the possible mode sequences. We therefore introduce an
efficient pruning method that enables sequences that are a
priori unlikely to contribute to the probability of losing the
true mode sequence to be discarded from the control design
problem. The result is a tractable optimization problem that
can be solved using Sequential Quadratic Programming[20],
for example.

We demonstrate the new active hybrid estimation approach
using a satellite fault detection scenario and show that the
new approach significantly reduces an upper bound on the
probability of losing the true mode sequence.



II. PROBLEM STATEMENT

A. Switching Linear Dynamic Systems

In this section we define a Switching Linear Dynamic
System (SLDS) and describe how approximate state estima-
tion can be carried out for such systems. We consider the
following discrete-time stochastic system:

xt+1 = A(mt)xt + B(mt)ut + ωt

yt+1 = C(mt)xt+1 + D(mt)ut + νt, (1)

where mt is a Markov chain that evolves according to a
transition matrix T such that:

p(mt+1 = j|mt = i) = Tij . (2)

The variables ωt and νt are zero-mean Gaussian white
noise processes. This system is a SLDS; the continuous
dynamics depend on the discrete mode mt, which switches
stochastically. There are D discrete modes, such that mt ∈
{1, . . . , D}. We define the problem of hybrid estimation
in an SLDS as that of estimating the probability distribu-
tion p(xt,mt|y1:t) over the hybrid discrete-continuous state,
conditioned on the sequence of all observations y1:t. This
probability can be written as a sum over all possible mode
sequences that end in the mode mt:

p(xt,mt|y1:t) =
∑

m1:t−1

p(xt,m1:t|y1:t). (3)

Each summand can be further expanded as a product of the
posterior probability of the discrete mode sequence m1:t

and the posterior distribution over the continuous state,
conditioned on this mode sequence:

p(xt,m1:t|y1:t) = p(m1:t|y1:t)p(xt|m1:t,y1:t). (4)

For a given mode sequence, the system dynamics are fully
known, although time-varying. This means that the proba-
bility distribution p(xt|m1:t,y1:t) can be calculated exactly
using the Kalman Filter recursion[21]. The probability of
a given mode sequence p(m1:t|y1:t) can also be calculated
using the residuals in the Kalman filter equations. In princi-
ple, therefore, it is possible to calculate the distribution over
the hybrid state p(xt,mt|y1:t) exactly, yielding a sum-of-
Gaussians expression. In practice, however, this exact hybrid
state estimation is infeasible since the number of mode
sequences m1:t grows exponentially with time and with the
number of possible modes.

B. Approximate Hybrid Estimation

A large number of approximate methods have been pro-
posed that make the problem tractable by approximating
the probability p(xt,mt|y1:t) [4][22][23]. One common ap-
proach is to discard mode sequences that have a low posterior
probability p(m1:t|y1:t). Such pruning approaches typically
ensure that a fixed number of mode trajectories are tracked.
In this paper, we assume that a pruning approach is used so
that k individual mode sequences are tracked. While pruning
is usually carried out at every time step, for the purposes
of finite-horizon control design, we assume that pruning is
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Fig. 1. Pruning approach to approximate hybrid estimation. At time t, the
estimator is tracking k = 4 distinct mode sequences. We assume that at
time t + h, the posterior probabilities of all possible mode sequences are
calculated. The top k sequences are retained, while the remaining sequences
are pruned. The true mode sequence is shown in bold; in this case it is not
pruned.

carried out at the end of the control horizon. The reasons
for, and implications of this assumption are discussed in
Section VIII.

It is possible for the true mode sequence to be discarded
in this pruning process. If this occurs, the hybrid estimator
typically diverges and the approximated state distribution
no longer resembles the true distribution. Fig. 1 shows the
pruning process for a time horizon of h time steps and k = 4
tracked mode sequences.

Before the start of the horizon, at time t, the observations
yt:t+h are unknown. However the probability of pruning the
true mode sequence, which we denote m∗

1:t, can be expressed
by marginalizing over all possible observations:

p(prune) =
∫
yt:t+h

p(A|y1:t+h)p(yt:t+h|y1:t)dyt+1:t+h,

(5)
where A is the event that the posterior probability of the true
mode sequence m∗

1:t is not in the top k posteriors:

A ⇐⇒ p(m∗
1:t|y1:t+h) < p(m(i)

1:t|y1:t+h), (6)

for k or more i.

The posterior probability p(m(i)
1:t|y1:t+h) can be calculated

for a given mode sequence m
(i)
1:t and a given observation

sequence yt:t+h, since the past observations y1:t−1 are
known. The probability of a given observation sequence



p(yt+1:t+h|y1:t−1) can be calculated as follows:

p(yt+1:t+h|y1:t−1) =∑
i

p(yt+1:t+h|m(i)
1:t+h,y1:t)p(m(i)

1:t+h|y1:t). (7)

In this equation, p(m(i)
1:t+h|y1:t) is the prior probability of

the mode sequence p(m(i)
1:t+h). Calculation of this value is

straightforward, as described in Section IV. Conditioned on
a mode sequence, the distribution p(yt:t+h|m(i)

1:t+h,y1:t−1)
over the observation sequences can be calculated using the
Kalman filter update equations. This is described in detail in
Section III. The key point is that the terms in the integral
(5) can be calculated in closed form; however the integral
itself cannot be evaluated. Hence the probability of pruning
the true mode sequence cannot be used as a criterion for
optimization. In a similar spirit to [18] and [19], in this
paper we therefore derive a tractable upper bound on the
probability of pruning the true mode sequence.

III. BOUNDING THE PROBABILITY OF PRUNING

In [19] we introduced a new upper bound on the probabil-
ity of error when selecting between an arbitrary number of
stochastic linear dynamic systems. In this section we extend
this work to create a bound on the probability of pruning the
true mode sequence in hybrid state estimation for SLDS. The
key insight behind this extension is that, enumerating each
possible mode sequence over a finite horizon, the dynamics
for the system conditioned on the mode sequence are fully
known. Hence each mode sequence can be considered a
hypothesis in the sense that only one mode sequence is the
true one, and the approximate hybrid estimation algorithm
described in Section II chooses the most a posteriori likely
k hypotheses based on the available observations. The ideas
for selection between known linear models developed in [19]
therefore extend naturally to active hybrid estimation for
SLDS.

In Bayes-optimal selection between several hypotheses,
the most a posteriori likely hypothesis is selected. An error
is defined as this selection rule choosing a hypothesis which
is not the true hypothesis. In this case, [19] showed that
for Gaussian observation distributions, such that p(y|Hi) =
N (µi,Σi) for all i, an upper bound on the probability of
error is given by:

P (error) ≤
∑

i

∑
j>i

P (Hi)
1
2 P (Hj)

1
2 e−k(i,j), (8)

where:

k(i, j) =
1
4
(µj − µi)T [Σi + Σj ]

−1 (µj − µi)

+
1
2
ln

∣∣Σi+Σj

2

∣∣√|Σi||Σj |
. (9)

This upper bound can be evaluated in closed form, while the
true expression for the probability of error cannot, in general.
In [18] we showed how control inputs can be designed to
minimize this bound, as shown in Fig. 2. Considering each
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Fig. 2. Designing control inputs to minimize the probability of error (Bayes
Risk) when selecting between multiple hypotheses. We employ a similar
approach for active hybrid estimation by considering each mode sequence
as a hypothesis.

mode sequence m
(i)
t:t+h as a hypothesis Hi, the expression

in (8) gives an upper bound on the probability that the true
mode sequence is not selected as the most likely hypothesis.
This is greater than or equal to the probability that the true
mode sequence is not selected among the k most likely
hypotheses, which is in turn the probability of pruning
defined in (5). Hence (8) gives an upper bound on the
probability of the true hypothesis being pruned, as required.

The bound in (8) applies for a general vector of obser-
vations y with a multivariate Gaussian distribution. In order
for this bound to be tractable for optimization, however, we
must be able to calculate the mean and covariance of this
distribution. In [18] we showed that for selection between
multiple linear models, this mean and covariance for a
finite horizon of observations can be calculated efficiently.
Extending this work, we now show that for Switching Linear
Dynamic Systems, the finite horizon observation distribution
can also be calculated efficiently.

We define:

y =
[

yT
t+1 yT

t+2 . . . yT
t+h

]T

u =
[

uT
t uT

t+1 . . . uT
t+h−1

]T
. (10)

Each observation vector yt+l is a random variable, which
we denote Yt+l. Under the assumptions in Section II, Yt+l

is normally distributed given an initial hybrid state estimate,
a sequence of inputs u and a mode sequence m

(i)
1:t+h. We

now define µ
(i)
t+l and Σ(i)

t+l for time steps l = 1, . . . , h and

all mode sequences m
(i)
1:t+h such that:

pYt+l
(yt+l|m(i)

1:t+h,y1:t,u)

= N (µ(i)
t+l,Σ

(i)
t+l). (11)

We also define µ(i) and Σ(i) such that

pY (y|m(i)
1:t+h,y1:t,u)

= N (µ(i),Σ(i)). (12)



We define Y (i) as the block vector of all observations over
the time horizon, conditioned on mode sequence m

(i)
1:t+h. The

distribution of Y (i) is given by:

µ(i) =
[
µ

(i)T
t+1 . . . µ

(i)T
t+k

]T

(13)

[
Σ(i)

]
f,g

= E
[(

[Y ]f − [µ(i)]f
)(

[Y ]g − [µ(i)]g
)∣∣m(i)

1:t+h,y1:t+h

]
,

(14)

where [·]f,g denotes the (f, g)’th index into the matrix. The
mean and covariance expressions can be calculated explicity
in terms of the control inputs using repeated application of
the Kalman Filter update equations. Given a distribution for
the state at time t such that p(xt|y1:t,m

(i)
1:t) = N (x̂(i), P (i)),

the mean µ(i) and covariance Σ(i) as defined in (13) and (14)
can be calculated. The results are given here for a system
where yt ∈ �n.

Define:
f = n(p − 1) + q, (15)

where:

1 ≤ q ≤ n 1 ≤ p ≤ k p, q ∈ Z. (16)

Then the mean is given by:

[µ(i)]f = [µ(i)
t+p]q

= C(mt+p)
( p∏

l=1

A(mt+l)
)
x̂0

+ C(mt+p)
p−1∑
l=0

(p−1∏
v=l

A(mt+v)
)
B(mt+l)ut+l

+ D(mt+p)ut+p−1. (17)

Defining g = n(r − 1) + s in the same manner as (15),
the expression for the covariance is:[
Σ(i)

]
f,g

= R′(p, r)+

C(mt+p)
( p∏

v=1

A(mt+v)
)
P (i)

(
A(mt+w)T

r∏
w=1

)
C(mt+r)T +

m−1∑
l=0

C(mt+p)
( p∏
v=l+2

A(mt+v)
)
Q

(
A(mt+w)T

r∏
w=l+2

)
C(mt+r)T ,

(18)

where m = min{f, g} and:

R′(p, r) =

{
R p = r

0 p �= r.
(19)

We use the following notation regarding matrix products.
Repeated right matrix products are denoted:

( N∏
i=1

A(mi)
)

= A(m1)A(m2) . . . A(mN−1)A(mN ), (20)

while repeated left matrix products are denoted:

(
A(mi)

N∏
i=1

)
= A(mN )A(mN−1) . . . A(m2)A(m1). (21)

In principle, therefore, we can use the bound in (8) as an
optimization criterion for active hybrid estimation. This is in
contrast to the exact value (5), which cannot be evaluated in
closed form.

However the new criterion requires evaluating O(N2
seqs)

terms, where Nseqs is the number of mode sequences being
considered. There are Dh possible mode sequences over
a horizon of h time steps, which means that even for a
relatively short time horizon and a modest number of pos-
sible modes, evaluating (8) is intractable. In Section IV we
overcome this problem using a principled pruning approach.

IV. CONSIDERING A SUBSET OF POSSIBLE MODE

SEQUENCES

Since it is intractable to evaluate every term in (8), we
cannot use this bound in an optimization technique such
as Sequential Quadratic Programming. Instead, we find a
looser bound that is tractable. In this section, we describe an
approach for finding the tightest possible such bound while
evaluating a fixed number of the terms in (8). The key idea is
to replace the terms that come from mode sequences that are
a priori unlikely to contribute to the probability of pruning
with a looser upper bound that does not depend on the control
inputs. Since these terms do not depend on the control inputs,
they do not need to be evaluated in the optimization.

A. A Looser Bound on the Probability of Pruning

In deriving the looser bound, we make use of Theorem 1,
which we prove in the Appendix:

|Σi+Σj

2 |√|Σi||Σj |
≥ 1, (22)

where Σi and Σj are symmetric and positive definite. We
now define:

Fij(u) = P (Hi)
1
2 P (Hj)

1
2 e−k(i,j), (23)

and write the bound on the probability of pruning (5) using
this definition:

P (pruning) ≤
∑

i

∑
j>i

Fij(u). (24)

Following on from the result in (22), and the definition in
(9), it is clear that k(i, j) ≥ 0, and hence e−k(i,j) ≤ 1. This
yields the following bound on Fij :

Gij = P (Hi)
1
2 P (Hj)

1
2 ≥ Fij(u). (25)

Note that the bound Gij does not depend on the control
inputs u. By replacing Bij(u) terms in (24) with Gij terms,
we obtain a looser upper bound on the probability of pruning
the true mode sequence:

p(prune) ≤
∑
i∈S

∑
j>i,j∈S

Fij(u) +
∑
i/∈S

∑
j>i,j /∈S

Gij . (26)



Here S is the set of s mode sequences for which the full
bound is calculated as a function of u. We would like the
tightest such bound for a given size of S. We achieve this
as follows.

The difference between the bound Gij and the bound
Fij(u) is largest when the control inputs u drive the
value of Fij(u) to zero, at which point the difference is
P (Hi)

1
2 P (Hj)

1
2 . Since we do not have knowledge of u

when choosing which mode sequences to include in S,
we assume this worst case difference between Gij and
Fij . In order to find the tightest bound of the form (26),
we therefore include in S the mode sequences that give
the largest P (Hi)

1
2 P (Hj)

1
2 . We would like to find S to

maximize:

L =
∑
i∈S

∑
j>i,j∈S

p(Hi)
1
2 p(Hj)

1
2 . (27)

Intuitively, this means that optimization will concentrate on
reducing terms where the control inputs can have the greatest
effect on the probability of pruning the true mode sequence,
and will ignore terms that do not contribute significantly to
the probability of pruning the true mode sequence. It can be
seen that in order to maximize L, the set S must be chosen to
contain the s hypotheses with the greatest prior probability
p(Hi); replacing any p(Hi) value with a lower one can only
reduce, or have no effect on, terms in the summation (27).

We have therefore shown how to derive a tractable upper
bound on the probability of pruning the true mode sequence
that involves a fixed number s of mode sequences for which
the observation statistics (17) and (18) need to be calculated.
By choosing the s most likely mode sequences, we achieve
the tightest such bound.

B. Mode Sequence Enumeration as Best-First Search

Choosing the s most likely mode sequences is a challeng-
ing problem in itself given an exponential number of possible
sequences. Prior work has, however, shown that this problem
can be posed as a tree search problem[7]. This enables the
best s mode sequences to be found efficiently using a best-
first informed search approach[24]. We now describe how
this can be applied to our problem. Fig. 3 shows part of the
search tree for the most likely mode sequence enumeration
problem. The tree has k initial nodes that correspond to each
of the mode sequences stored by the hybrid estimator at
time t. In the diagram, k = 2. The graph search approach
aims to find the s mode sequences m1:t+h with the highest
prior probability p(m1:t+h|y1:t). Making use of the Markov
assumption in Section II, we can write this as:

p(m1:t+h|y1:t) = p(m1:t)
t+h∏

i=t+1

p(mi|mi−1)

= p(m1:t)
t+h∏

i=t+1

Tmimi−1 , (28)
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Fig. 3. Search tree for enumeration of a priori most likely mode sequences.
At the far left there are k nodes corresponding to the mode sequences tracked
by the hybrid estimator at time t. Nodes at the far right correspond to a
full assignment to the modes m1:t+h. Each arc value is the logarithm of
the transition probability, and the value of a node is found by summing
the value of the arcs leading to the node. Nodes are expanded in best-first
order until s goal nodes are expanded. In this manner, the most likely mode
sequences can be enumerated without evaluating the prior likelihood of each
mode sequence, which is intractable. In this diagram k = 2 and s = 4.

where Txy is defined in (2). We can equivalently maximize
the logarithm of this probability:

log p(m1:t+h|y1:t) = log p(m1:t|y1:t) +
t+h∑

i=t+1

log Tmimi−1 .

(29)
The cost of each initial node in the search tree is the
probability of the corresponding mode sequence m

(i)
1:t given

the observations up to time t. This probability is provided by
the hybrid estimator running up to time t. Each intermediate
node in the graph corresponds to a partial assignment to
the modes m1:t+h, and a goal node corresponds to a full
assignment. The cost of a node is the sum of the arcs from the
initial node to that node. We can therefore explore the graph
using best-first search [24] to find the set of s goal nodes
with the largest log-probability given in (29). In this manner,
the most likely mode sequences can be enumerated without
evaluating the prior likelihood of each mode sequence, which
is intractable.

V. SUMMARY

The new active hybrid estimation approach can be sum-
marized as follows:

• Hybrid estimation calculates the probabilities of the k
tracked mode sequences, as well as the distribution
over the continuous state conditioned on each mode
sequence.

• Starting from the k tracked mode sequences, active
estimation enumerates the s most likely future mode
sequences over the horizon t + 1, . . . , t + h using best-
first search.



• Active estimation forms a cost function involving only
terms corresponding to the s most likely future mode
sequences:

J =
∑
i∈S

∑
j>i,j∈S

P (Hi)
1
2 P (Hj)

1
2 e−k(i,j). (30)

• Active estimation optimizes the finite sequence of con-
trol inputs u to minimize the cost function J , subject to
constraints, using Sequential Quadratic Programming.

• Optimized control inputs are executed, while hybrid
estimation continues to estimate the hybrid state.

Since control inputs are designed subject to hard con-
straints, we can ensure that:

1) A control task, defined in terms of the expected state,
is achieved.

2) The expected system state remains within a lineariza-
tion region.

3) Actuator saturation limits are not violated.

In this sense, the active hybrid estimation approach uses
constraints to perform control, while optimizing with regard
to estimation.

VI. SIMULATION RESULTS

In this section we present simulation results that demon-
strate the new active hybrid estimation approach with a
satellite fault detection scenario.

Satellite dynamics, relative to a nominal circular orbit,
can be expressed in linear form using Hill’s equations[25],
assuming that disturbances do not act on the spacecraft
and that deviations from the nominal orbit remain small
(hundreds of meters). The system state is defined in a rotating
reference frame, where the axes corresponding to radial, in-
track and out-of-plane motion. For the simulations given here
we consider the motion in the radial and in-track directions
only; this motion is decoupled from the out-of-plane motion.

We assume a 90 minute low-Earth orbit, time steps of
60 seconds, and a planning horizon of 10 time steps. Ob-
servations of radial and in-track velocity are made, with
additive zero-mean Gaussian white noise of standard de-
viation 0.1mm/s. There are thrusters that act to change
the radial and in-track velocities. The input ut is defined
such that

[
ut

]
1

is an impulsive velocity change in the radial
direction while

[
ut

]
2

is an impulsive velocity change in the
in-track direction. In order to model imprecision in thrusting,
we assume zero-mean Gaussian white process noise, with
standard deviation 0.5% of the maximum thruster effort.

The satellite’s mean initial state is at rest, at zero displace-
ment from the nominal orbit. The standard deviation of the
initial state is 0.1m in displacement and 0.1mm/s in velocity
in both in-track and radial directions. In all of the Gaussian
distributions we assume diagonal covariance matrices, i.e.
zero correlation between different uncertain variables.

The satellite can switch between four different modes,
which are used to model three single-point failures. In the
case of sensor failure, we assume that the observation is
zero-mean Gaussian noise, while in the case of a thruster
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Fig. 4. Typical input sequence designed by active hybrid estimation. The
expected in-track and radial displacements can be at most ±50m. The
optimized sequence makes full use of the available displacement and yields
an upper bound on the probability of pruning the true mode sequence of
0.12.

failure, we assume that the thruster exerts no control effort.
The modes are as follows:

1) Mode 1: Nominal operation
2) Mode 2: Radial velocity sensor failure
3) Mode 3: In-track velocity sensor failure
4) Mode 4: Radial thruster failure

The transition matrix as defined in (2) is:

T =

⎡
⎢⎢⎣

0.989 0.01 0.001 0.01
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ . (31)

Note that we assume that once a fault occurs it persists
indefinitely.

For the examples given, active estimation optimizes with
regard to the 20 most likely mode sequences, i.e. s = 20.
However when evaluating the performance of the method, we
report the upper bound on the probability of pruning the true
mode sequence calculated by taking into account all mode
sequences.

A. Box-Constrained Displacement

In this section we use active hybrid estimation to design a
control sequence to optimally detect failures while ensuring
that the expected spacecraft position remains within a box
region. The maximum actuator effort was constrained to be
50mm/s. Fig. 4 shows a typical input sequence designed
by the active hybrid estimation approach for a maximum
expected displacement of 50m. This sequence gives an upper
bound on the probability of pruning of 0.12. Fig. 5 shows
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Fig. 5. Variation of probability of pruning with size of box allowed for
active estimation maneuver. As more room is allowed for the maneuver, the
upper bound on the probability of pruning the true mode sequence decreases.
Note that for very small boxes, the value of the bound is greater than 1,
which means that it loses meaning as a bound on the true probability of
pruning.

how the upper bound on the probability of error varies with
the size of the box allowed for the maneuver. Increasing the
space for the maneuver decreases the probability of pruning
the true mode sequence.

B. Displacement Maneuver

In this section we use active hybrid estimation to detect
failures optimally while carrying out an in-track displace-
ment maneuver. In this maneuver, the expected system state
must go from an expected in-track displacement of zero to
an in-track displacement of 20m (conditioned on there being
no actuator failure). By using constrained optimization, the
active hybrid estimation approach is able to ensure that this
goal is achieved, while optimizing to detect failures.

Fig. 6 shows a typical sequence designed by the method.
This yields an upper bound on the probability of pruning of
0.10. For comparison we also show a fuel-optimal sequence.
This gives an upper bound on the probability of pruning
of 0.87. Hence the active estimation approach significantly
reduces the probability of the hybrid estimator losing the
true mode sequence while achieving the same objective as
the fuel-optimal sequence.

VII. CONCLUSION

This paper introduced a novel method for active state esti-
mation in Switching Linear Dynamic Systems. The method
designs finite sequences of control inputs that reduce the
probability of pruning the true mode sequence while ensuring
that a given control task is achieved. The key innovation was
to derive a tractable upper bound on the probability of prun-
ing the true mode sequence. Simulation results demonstrated
the approach using a satellite failure scenario.

VIII. DISCUSSION

One of the key assumptions used in creating the new
approach is that pruning is carried out at the end of the
finite horizon control sequence, rather than at every time
step. However in most hybrid estimation schemes, pruning
occurs at every time step. While it would be possible, and
in fact simpler, to formulate the control design problem for
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Fig. 6. Typical displacement maneuver. The expected in-track displacement
is constrained to change from zero to 50m, while the expected radial
displacement must be zero at the end of the maneuver. Top: the expected
spacecraft trajectory designed by the active hybrid estimation apprach to
be optimal with regard to estimation. Bottom: the expected fuel-optimal
spacecraft trajectory. The estimation-optimal trajectory gives an upper bound
on the probability of pruning of 0.10, while the fuel optimal trajectory has
an upper bound of 0.87. Note that the fuel-optimal trajectory has very little
radial motion, while the discrimination-optimal trajectory uses a large radial
motion to detect failures in the radial thruster and velocity sensor.

one time step consistent with such a scheme, we did not do
so for two reasons. First, in the discrete-time formulation,
in many systems the effect of control inputs at time t is not
manifested in the observations until some time after t + 1.
Hence a design approach that only takes into account how
the inputs at time t will affect the observations at t + 1
will be severely limited. Second, by constraining the system
state over a long horizon, the optimization has much greater
latitude in designing a powerful control sequence for the
purposes of estimation; the system state can be driven far
from its initial value, while being brought back to its goal
value by the end of the time horizon. Hence by considering
the probability of pruning over a horizon, rather than over a
single time step, the approach yields sequences that are more
powerful with regard to estimation.

APPENDIX

In this section we prove Theorem 1, which was used in
deriving a looser upper bound on the probability of pruning
in Section IV. We make use of the following inequality:

Lemma 1: If A, B are positive-definite symmetric n × n
matrices then,

|A + B| ≥ |A| + |B| , (32)

holds for all n > 0.



Proof: It is sufficient to prove this statement when A is
diagonal (with positive components), as we can always find
a basis where this is true.

First note that when n = 1, A and B are just positive real
numbers, and (32) is clearly true. Now let us suppose that
(32) is true when n = k, for some k > 0.

Let A(k+1) be a diagonal (k + 1) × (k + 1) matrix with
positive components λi, and B(k+1) be a symmetric matrix
of the same dimensions, with components b

(k+1)
ij . Then∣∣∣A(k+1) + B(k+1)

∣∣∣ =
(
λ1 + b

(k+1)
11

) ∣∣∣M′(k)
11

∣∣∣ (33)

+
(
b
(k+1)
12

) ∣∣∣M′(k)
12

∣∣∣ + · · ·
+

(
b
(k+1)
1,k+1

) ∣∣∣M′(k)
1,k+1

∣∣∣ ,

where M′(k)
ij is the k×k matrix formed by removing the ith

row and jth column from the matrix
(
A(k+1) + B(k+1)

)
.

We can now apply (32) to
∣∣∣M′(k)

ij

∣∣∣, as we have assumed
(32) to be true in k dimensions. After some thought about
the form of the determinant of A with the ith row and jth

column removed, and defining M(k)
ij to be B with the ith

row and jth column removed, we find

M′(k)
11 ≥ λ2λ3 · · ·λk+1 +

∣∣∣M(k)
11

∣∣∣ (34)

M′(k)
1m ≥

∣∣∣M(k)
1m

∣∣∣ , (35)

where 2 ≤ m ≤ k + 1. Applying these inequalities to (33),
and using the expansion of

∣∣B(k+1)
∣∣ in terms of M(k)

ij , we
find that:∣∣∣A(k+1) + B(k+1)

∣∣∣ ≥ ∣∣∣A(k+1)
∣∣∣ +

∣∣∣B(k+1)
∣∣∣ . (36)

Hence we have shown that if (32) is true for n = k, it is
also true for n = k + 1. Therefore, by induction, it is true
for all n > 0.

We now use this lemma to prove the following theorem:

Theorem 1: Any two symmetric positive-definite n × n
real matrices Σ0, Σ1 satisfy the following inequality:∣∣Σ0+Σ1

2

∣∣√|Σ0| |Σ1|
≥ 1. (37)

Proof: Using Lemma 1 in the last line,

|Σ0| |Σ1| =
( |Σ0| + |Σ1|

2

)2

−
( |Σ0| − |Σ1|

2

)2

(38)

≤
( |Σ0| + |Σ1|

2

)2

(39)

≤
∣∣∣∣Σ0 + Σ1

2

∣∣∣∣
2

. (40)
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