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A Probabilistic Particle-Control Approximation of
Chance-Constrained Stochastic Predictive Control

Lars Blackmore, Masahiro Ono, Askar Bektassov, and Brian C. Williams

Abstract—Robotic systems need to be able to plan control actions
that are robust to the inherent uncertainty in the real world. This
uncertainty arises due to uncertain state estimation, disturbances,
and modeling errors, as well as stochastic mode transitions such as
component failures. Chance-constrained control takes into account
uncertainty to ensure that the probability of failure, due to collision
with obstacles, for example, is below a given threshold. In this pa-
per, we present a novel method for chance-constrained predictive
stochastic control of dynamic systems. The method approximates
the distribution of the system state using a finite number of parti-
cles. By expressing these particles in terms of the control variables,
we are able to approximate the original stochastic control problem
as a deterministic one; furthermore, the approximation becomes
exact as the number of particles tends to infinity. This method
applies to arbitrary noise distributions, and for systems with lin-
ear or jump Markov linear dynamics, we show that the approx-
imate problem can be solved using efficient mixed-integer linear-
programming techniques. We also introduce an important weight-
ing extension that enables the method to deal with low-probability
mode transitions such as failures. We demonstrate in simulation
that the new method is able to control an aircraft in turbulence
and can control a ground vehicle while being robust to brake
failures.

Index Terms—Chance constraints, hybrid discrete-continuous
systems, nonholonomic motion planning, planning under stochas-
tic uncertainty.

I. INTRODUCTION

ROBUST control of robotic systems has received a great
deal of attention in recent years [12], [36], [39], [40], [47],

[53]. Robotic systems need to be able to plan control actions that
are robust to the inherent uncertainty in the real world. This un-
certainty arises due to uncertain state estimation, disturbances,
and modeling errors, as well as stochastic mode transitions such
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as component failures. Many authors have investigated control
under set-bounded uncertainty, for example, [6], [18], [19], [31]
and [44]. In this case, robust control ensures that failure is pre-
vented under all possible uncertainties.

In many cases, for example, wind disturbances, uncertainty
is best represented using a stochastic model, rather than a
set-bounded one [4]. The problem of control under stochas-
tic uncertainty has been researched extensively, for exam-
ple, [7], [38], [41], and [54]. Early approaches such as linear
quadratic Gaussian control [7] used the certainty equivalence
principle [3]; this enables uncertain variables to be replaced
with their expectations and control laws to be designed in terms
of these expectations. For unconstrained problems with lin-
ear systems and Gaussian noise, controllers can be designed
that are optimal with regard to the original stochastic control
problem.

Alternative approaches expressed certain classes of stochas-
tic control problem as a Markov decision process (MDP) [43].
For discrete-state spaces, value iteration can be used to find the
control policy that maximizes the expected reward. Continuous-
state spaces can be handled by discretization; however, the
problem quickly becomes intractable as the number of discrete
states grows [27]; hence, the application of this approach to dy-
namic systems with high-dimensional continuous-state spaces
has been limited.

Predictive stochastic control takes into account probabilistic
uncertainty in dynamic systems and aims to control the pre-
dicted distribution of the system state in some optimal manner
over a finite planning horizon [28], [41], [43], [57]. This is a very
challenging problem, since we must optimize over the space of
possible future state distributions. Furthermore, with stochas-
tic uncertainty, it is typically not possible to prevent failure in
all possible cases. Instead, previous authors have proposed a
chance-constrained formulation [41], [50]. Chance constraints
specify that the probability of failure must be below a given
threshold. Failure can be defined as collision either with an ob-
stacle or failure to reach a goal region. This chance-constrained
formulation is a powerful one as it enables the user to specify
a desired level of conservatism, which can be traded against
performance. In this paper, we are concerned with the prob-
lem of chance-constrained predictive control under stochastic
uncertainty.

Recent work has considered chance-constrained predictive
control of linear systems when all forms of uncertainty are
additive and Gaussian, and the feasible region is convex. A
number of authors suggested approaches that pose the stochas-
tic control problem as an equivalent deterministic optimization
problem [5], [12], [25], [32], [50].
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For many problems, the assumptions of additive Gaussian
noise and convex feasible regions do not apply. In this paper,
we describe a new approach that relaxes these assumptions
and applies to a more general class of system than previous
approaches. The key idea behind the new approach is to ap-
proximate all probability distributions using a finite set of sam-
ples or particles. We then approximate the stochastic predictive
control problem as a deterministic one, with the property that
as the number of particles tends to infinity, the approximation
tends to the original stochastic problem. This method can han-
dle arbitrary, even multimodal distributions, and, in principle,
can deal with nonlinear systems. However, we show that in
the case of stochastic linear systems with uncertain parameters
and jump Markov linear systems (JMLSs), the resulting opti-
mization problem can be solved efficiently using mixed-integer
linear programming (MILP) [26]. JMLSs are convenient tools
for representing robotic systems subject to random component
failures [13], [23], [56]. The new method designs optimal con-
trol inputs that ensure chance constraints are satisfied despite
both component failures and continuous uncertainty, such as
disturbances.

The idea of approximating stochastic control problems and
stochastic optimization problems using sampling was previously
proposed by a number of authors. These approaches use sam-
ples to approximate the expectation of a cost function, thus
yielding a deterministic optimization problem that minimizes
the approximated expectation. Samples are variously referred
to as “particles” [21], [24] “simulations” [52], and “scenar-
ios” [14], [36], [55]. In the Pegasus system, Ng and Jordan [36]
propose the conversion of an MDP with stochastic transitions
into an equivalent one, where all randomness is represented in
the initial state. The method draws a finite number of samples,
or scenarios, from the initial state and finds the policy that op-
timizes the sample mean of the reward for the scenarios. In
a similar manner, Greenfield and Brockwell [24] proposed a
method for predictive control that approximates the expected
cost of a given control sequence using a finite number of sam-
ples. Andrieu et al. [2] used particles to approximate the value
function and its gradient in an optimal stochastic control prob-
lem, and used a gradient search method to find a locally optimal
solution. In the case of optimal sensor scheduling, Singh et
al. [52] employed a similar approximation method, but in this
case used stochastic approximation to minimize the cost func-
tion. This approach is guaranteed to converge to a local opti-
mum under certain assumptions. Tarim et al. [55] introduced
a scenario-based approach to stochastic constraint program-
ming. This approach handles chance-constrained problems but
is, however, limited to discrete decision spaces. Vidyasagar [58]
considered sample-based approximations of robust controller
synthesis problems, while Shapiro [51] proposed sample-based
approximations of multistage stochastic optimization problems,
where certain decisions can be made after the realizations of
some uncertain variables are observed. In both [58] and [51],
an approximation of the expected cost is minimized, and an-
alytic results are given that describe how many samples are
required to guarantee, in a probabilistic sense, a particular level
of approximation error. Nesterov [35] considers single-stage

stochastic-optimization problems in which the goal is to mini-
mize expected cost and proposes a method that draws samples
at each step of an iterative optimization scheme. Again, ana-
lytic characterizations of the approximation error introduced by
sampling are provided.

In this paper, we extend this research in four ways. First, we
incorporate constraints on the probability of failure, enabling
chance-constrained stochastic control with continuous decision
variables. Control with constraints on the probability of events
is a powerful capability, which is also a much more challenging
problem than control with only constraints on expected values,
for example. Second, we show that in the case of stochastic
linear dynamic systems and JMLSs, the approximated chance-
constrained control problem can be solved to global optimality
using MILP in an efficient manner. Third, we use importance
weighting to ensure that low-probability mode transitions such
as failures are handled in an efficient manner. Finally, we can
handle nonconvex feasible regions.

Our approach was first published in [9] and [11]. Concur-
rently with this, Calafiore and Campi [14] introduced a sam-
pling approach to solve chance-constrained feedback control
problems for convex feasible regions; they use a bounding
approach to determine how many times the constraints must
be sampled to ensure chance constraint satisfaction. This ap-
proach can be applied to chance-constrained predictive control
problems; however, as noted by Campi and Calafiore [17], the
bounding approach introduces conservatism, and is restricted to
convex problems. Conservatism means that the true probability
of constraint violation is below the allowable level specified by
the chance constraint. Excessive conservatism can lead to un-
necessarily high-cost solutions and infeasibility. In Section IX,
we provide an empirical comparison of our approach with that
of [14].

Another approach for chance-constrained control with non-
Gaussian uncertainty was previously proposed by Lecchini-
Visintini et al. [29], and uses a Monte–Carlo Markov chain
(MCMC) framework [45] to find an approximately optimal con-
trol input through simulation-based optimization. This works
by estimating the distribution of a random variable, which is
constructed so that the peaks of the distribution coincide with
the optimal decision value. The estimation process is then car-
ried out by MCMC [45]. Analytic results on the convergence of
MCMC are given by Lecchini-Visintini et al. [30] and Rosenthal
[46]. Unlike our proposed approach based on MILP, MCMC
does not rely on linear system dynamics, and can handle cases
where the distribution of the random variables depends on the
system state. However, for robotic control problems, the MCMC
approach has the disadvantage of being sensitive to manually
chosen parameters such as the burn-in period and the “peaked-
ness” parameter [29]. In Section VIII, we provide an empiri-
cal comparison of our approach with that of Lecchini-Visintini
et al. [29].

We demonstrate our new method in simulation using two
scenarios. First, we consider control of an unmanned aircraft
subject to turbulence and uncertain localization. Second, we
consider control of a wheeled robotic vehicle with failure-prone
brakes. The results show that the method is effective in solving
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the approximated stochastic control problem and that for a large
number of particles, the approximation error becomes small.

II. PROBLEM STATEMENT

In this paper, we consider a discrete-time dynamic system
with state x ∈ R

nx , control inputs u ∈ R
nu , and model pa-

rameters θ ∈ R
nθ . Disturbances ν ∈ R

nx act on the system.
The future states of the system are defined by the following
functions:

x1 = f1(x0 ,u0 , ν0 , θ0)

x2 = f2(x0 ,u0 ,u1 , ν0 , ν1 , θ0 , θ1)

...

xT = fT (x0 ,u0:T −1 , ν0:T −1 , θ0:T −1). (1)

We use xt to denote the value of variable x at time t, and use
x1:T to denote the sequence 〈x1 , . . . ,xT 〉.

We consider the case where the initial state, model parame-
ters, and disturbances are uncertain, but are modeled as random
variables. In this case, the future states are also random vari-
ables, whose distributions depend on the control inputs. We
are concerned with the following optimal, chance-constrained
stochastic control problem.

Problem 1 (Chance-constrained control problem):

Minimize:

E[h(u0:T −1 ,x1:T )]

subject to:

p(x1:T /∈ F ) ≤ δ

E[x1:T ] ∈ G

u0:T −1 ∈ U

where h(·) is a cost function defined over the control inputs and
system state trajectory, F is an operator-defined feasible region
for the system state trajectory, G is an operator-defined feasible
region for the expected state trajectory, and U is an operator-
defined feasible region for the control inputs. In other words,
the problem under consideration is to design a finite, optimal
sequence of control inputs, taking into account probabilistic
uncertainty, which ensures that the state of the system leaves a
given feasible region F with probability at most δ, and keeps the
expected state within another feasible region G. In the case of
vehicle path planning, F can be defined so that the system state
is in a goal region at the final time step and avoids a number of
obstacles at all time steps. G can be defined so that the expected
velocity is identically zero at the final time. Optimality can be
defined in terms of either minimizing control effort or time
to reach the goal, for example. Note that we impose a joint
chance constraint, i.e., one over the multidimensional variable
x1:T . This is in contrast to prior work that considered chance
constraints over scalar variables, for example, [15] and [16].

We consider the following three sources of uncertainty.
1) The initial state is specified as a probabilistic distribution

over possible states. This uncertainty arises because the

system state cannot be observed directly; hence, we must
estimate a distribution over the system state from noisy
observations.

2) Disturbances act on the system state. These are modeled as
stochastic processes. In the case of aircraft path planning,
this may represent wind or turbulence disturbances.

3) The system parameters are not known exactly. This may
arise either due to approximate modeling (through lin-
earization, for example) or because of random jumps.
These jumps can model component failures, for example.

We assume that the distributions of the uncertainty mentioned
here are known. We make no assumptions about the form the
distributions take, except that the random variables are indepen-
dent of the control inputs. We also assume that we can generate
samples from the uncertain distributions. For notational sim-
plicity, in the following, we do not consider uncertainty in the
feasible region F . The extension to this form of uncertainty is
straightforward.

The key idea behind solving this stochastic control problem is
to approximate all distributions using samples, or particles, and
then, solve the resulting deterministic problem. In Section III, we
review some results relating to sampling from random variables.
In Section IV, we then describe the new approach in detail.

III. SAMPLING FROM RANDOM VARIABLES

Previous work has shown that approximating the probability
distribution of a random variable using samples, or particles,
can lead to tractable algorithms for estimation and control [21].
Here, we review some properties of samples drawn from random
variables.

Suppose that we are given two multivariate probability dis-
tributions p(x) and q(x). We would like to calculate properties
of the target distribution p(x) such as the expectation

EX [f(X)] =
∫

f(x)p(x)dx. (2)

In many cases, this integral cannot be evaluated in closed form.
Instead, we approximate the value by drawing N independent,
identically distributed random samples x(1) , . . . ,x(N ) from the
proposal distribution q(x), and calculate the weighted sample
mean

ÊX [f(X)] =
1
N

N∑
i=1

wif(x(i)), wi =
p(x(i))
q(x(i))

(3)

where wi is known as the importance weight. As long as q(x) >
0 for all x, such that p(x) > 0, and under weak assumptions
on the boundedness of f(·) and the moments of p(x), from
the strong law of large numbers [8], we have the convergence
property, i.e.,

ÊX [f(X)] −→ EX [f(X)] as N −→ ∞. (4)

Hence, the expectation, which could not be evaluated exactly in
closed form, can be approximated as a summation over a finite
number of particles. In addition, note that we have approximated
the expectation over the target distribution by drawing samples
from the proposal distribution. In the simplest case, we can set
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p(x) = q(x) and sample directly from the target distribution;
this is known as fair sampling. However, prior work has shown
that other choices of q(x) can significantly improve algorithm
performance. We elaborate on this in Section VI.

The convergence property (4) can also be used to approximate
the probability of a certain event, such as the event f(x) ∈ A.
This is exactly given by

PA =
∫

f (x)∈A

p(x)dx. (5)

This expression is equivalent to the expectation

PA = EX [g(x)] g(x) =
{

0, f(x) ∈ A
1, f(x) /∈ A.

(6)

We can therefore approximate PA as

P̂A =
1
N

N∑
i=1

wig(x(i)). (7)

Note that this expression is simply the weighted fraction of par-
ticles for which f(x(i)) ∈ A. We assume that the evaluation of
f(·) and to check whether a given value is in A are both straight-
forward, and also is the calculation of P̂A ; we simply need to
count how many of the propagated particles f(x(i)) fall within
A. By contrast, the evaluation of PA as in (5) requires a finite
integral over an arbitrary probability distribution, where even
the calculation of the bounds on the integral may be intractable.
Hence, the particle-based approximation is extremely useful,
especially given the convergence property

P̂A −→ PA as N −→ ∞ (8)

again, given assumptions on the boundedness of f(·) and the
moments of p(x) [8]. In Section IV, we use this property to
approximate the stochastic control problem defined in Section II.

IV. OUTLINE OF CHANCE-CONSTRAINED PARTICLE

CONTROL METHOD

In this section, we describe a new method for approximating
the general chance-constrained stochastic control problem de-
scribed in Section II. The new method works by approximating
all probabilistic distributions with particles, thereby approximat-
ing an intractable stochastic optimization problem as a tractable
deterministic optimization problem. By solving this determin-
istic problem, we obtain an approximate solution to the original
stochastic problem (problem 1), with the additional property
that as the number of particles used tends to infinity, the approx-
imation becomes exact. The new chance-constrained particle
control method is given in Table I and illustrated in Fig. 1.

This general formulation can encompass a very broad range
of chance-constrained problems. In the algorithm outline, we
have omitted two key parts: first, how to perform the resulting
optimization efficiently and, second, how to choose the proposal
distribution q(·). In Section V, we show that in the case of linear
and JMLSs and polygonal feasible regions, the optimization
can be solved using efficient MILP methods. In Section VI,
we discuss the choice of proposal distribution and design a

TABLE I
CHANCE-CONSTRAINED PARTICLE CONTROL ALGORITHM

proposal to improve the performance with low-probability fault
transitions.

V. MIXED-INTEGER LINEAR PROGRAMMING FORMULATION OF

PARTICLE CONTROL PROBLEM

A. Linear Systems

We first restrict our attention to the case of uncertain linear
system dynamics and polygonal feasible regions. Furthermore,
we assume that the cost function h is piecewise linear. Previous
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Fig. 1. Particle-control method in a vehicle path-planning scenario. The fea-
sible region is defined so that the plan is successful if the vehicle avoids the
obstacles at all time steps and is in the goal region at the final time step. The
objective is to find the optimal sequence of control inputs so that the plan is
successful with a probability of at least 0.9. The particle-control method ap-
proximates this so that at most, 10% of the particles fail. In this example, all
weights wi are 1.

work has shown that optimal path planning with obstacles for
vehicles, such as aircraft or satellites, can be posed as predictive
control design for linear systems in polygonal feasible regions
[49], [44]. Optimality can be defined in terms of fuel use or
time, for example. We extend this research by showing that
the particle control method outlined in Section IV can be used
to design control inputs for linear systems that ensure chance
constraints are satisfied under probabilistic uncertainty in the
initial state and disturbances.

We consider the linear discrete-time system model

xt+1 = A(θt)xt + B(θt)ut + νt (14)

where A(θt) indicates that the matrix A is a function of the
parameters θt . Substituting this system model into (9), we obtain
the following equation for x(i)

t :

x(i)
t =

t−1∑
j=0

(
t−j∏
l=2

A(θ(i)
l−1)

)(
B(θ(i)

j )uj +ν
(i)
j

)
+

t−1∏
l=0

A(θ(i)
l )x(i)

0 .

(15)
Note that this is a linear function of the control inputs, and that
x(i)

0 , ν(i)
j , and θ

(i)
j are all known values, as generated in step 1 of

Table I. Hence, each particle x(i)
1:T is a known linear function of

the control inputs. Furthermore, the sample mean of the particles
is a known linear function of the control inputs.

To impose the approximate chance constraint (10), we need
to constrain the weighted fraction of particles that fall outside
of the feasible region. To do so, we first define a set of N binary
variables z1 , . . . , zN , where zi ∈ {0, 1}. These binary variables
are defined so that zi = 0 implies that particle i falls inside the
feasible region. We then constrain the weighted sum of these

Fig. 2. Two-dimensional convex polygonal feasible region Ft defined for the
state at time t. The vectors at1 , . . . , atN t are the unit outward normals to the
Nt line segments that define the feasible region.

binary variables, i.e.,

1
N

N∑
i=1

wizi ≤ δ. (16)

This constraint ensures that the weighted fraction of particles
falling outside of the feasible region is at most δ. We now
describe how to impose constraints, such that

zi = 0 =⇒ x(i)
1:T ∈ F (17)

first for convex polygonal feasible regions and then for noncon-
vex polygonal feasible regions.

1) Convex Feasible Regions: A convex polygonal feasible
region F defined for the state trajectory x1:T is defined as a
conjunction of convex polygonal constraints Ft for each time
step 1, . . . , T , such that

x1:T ∈ F ⇐⇒
∧

t=1,...,T

xt ∈ Ft. (18)

In turn, the polygonal feasible region Ft is defined as a conjunc-
tion of linear constraints a′

tlxt ≤ btl for l = 1, . . . , Nt , where
atl is defined as pointing outward from the polygonal region.
Then, as illustrated in Fig. 2, xt lies within Ft if and only if all
of the constraints are satisfied, i.e.,

xt ∈ Ft ⇐⇒
∧

l=1,...,Nt

a′
tlxt ≤ btl . (19)

We now use “Big M” techniques to ensure that the constraint
(17) is satisfied. We impose the following constraints:

a′
tlx

(i)
t − btl ≤ Mzi ∀t ∀l (20)

where M is a large positive constant. A value of zi = 0 implies
that, for particle i, every constraint is satisfied for every time
step, whereas for large enough M , a value of zi = 1 leaves
particle i unconstrained. We therefore have

zi = 0 =⇒
{
x(i)

t ∈ Ft ∀t
}

=⇒ x(i)
1:T ∈ F (21)

as required.
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Fig. 3. Two-dimensional nonconvex polygonal feasible region F . The feasible
region is the complement of several convex obstacles (shaded). Each obstacle
Oj is defined by the Nj vector normals aj 1 , . . . , ajN j

.

2) Nonconvex Feasible Regions: Predictive control within a
nonconvex feasible region is a much more challenging problem
than control within a convex feasible region [44]. However, as
shown by Schouwenaars et al. [49], vehicle path planning with
obstacles can be posed as such a problem; hence, it is of great
interest.

A polygonal nonconvex feasible region can, in general, be
defined as the complement of L polygonal infeasible regions,
as shown in Fig. 3. In other words, the state trajectory x1:T is in
the feasible region if and only if all obstacles are avoided for all
time steps. As noted by Schouwenaars et al. [49], avoidance of a
polygonal obstacle can be expressed in terms of a disjunction of
linear constraints, i.e., the system state at time t avoids obstacle
Oj , defined as shown in Fig. 3, if and only if∨

l=1,...,Nj

a′
j lxt ≥ bjl . (22)

In a similar manner to [49], we introduce binary variables dijtl ∈
{0, 1} that indicate whether a given constraint l for a given
obstacle Oj is satisfied by a given particle i at a given time step
t. The constraint

a′
j lx

(i)
t − bjl + Mdijtl ≥ 0 (23)

means that dijtl = 0 implies that constraint l in obstacle Oj is
satisfied by particle i at time step t. Again, M is a large positive
constant. We now introduce binary variables eijt ∈ {0, 1} that
indicate whether a given obstacle Oj is avoided by a given
particle i at a given time step t. The constraint

Nj∑
l=1

dijtl − (Nj − 1) ≤ Meijt (24)

ensures that eijt = 0 implies that at least one constraint in ob-
stacle Oj is satisfied by particle i at time step t. This, in turn,
implies that obstacle Oj is avoided by particle i at time step t.

Next, we introduce binary variables gij ∈ {0, 1} that indicate
whether a given obstacle Oj is avoided by particle i at all time
steps. The constraints

T∑
t=1

eijt ≤ Mgij ,

L∑
j=1

gij ≤ Mzi (25)

ensure that gij = 0 implies that obstacle j is avoided at all time
steps by particle i, and that zi = 0 implies that all obstacles are
avoided at all time steps by particle i. Hence, for nonconvex
feasible regions F , we have

zi = 0 =⇒ x(i)
1:T ∈ F (26)

as required.

B. Particle Control for Jump Markov Linear Systems

A special case of the linear dynamics (14) that is of particular
interest for robotics is the JMLS [56], [23], [13], [20]. A JMLS
is a system whose model parameters θ take on values from a
finite set. In this case, θt is referred to as the discrete state,
or mode, and xt is referred to as the continuous state; hence, a
JMLS is a form of a hybrid discrete-continuous system. Without
loss of generality, we assume that θt is an integer in the range
1, . . . , nθ . The dynamics of a JMLS are defined as

xt+1 = A(θt)xt + B(θt)ut + νt (27)

where θt is a Markov chain that evolves according to a transition
matrix T ∈ R

nθ ×nθ , such that

p(θt+1 = j|θt = i) = Tij (28)

where Tij denotes the (i, j)th element of matrix T . The variable
νt is a disturbance process whose distribution can take any form
but is assumed to be known.

In order to apply the particle control approach of Section IV
to JMLS, we sample from discrete mode sequences, initial con-
tinuous state and continuous disturbances according to a pro-
posal distribution q(x0 , ν0:T −1 , θ0:T −1). Given a discrete mode
sequence and samples for all of the uncertain continuous vari-
ables, the future system state trajectory is a known deterministic
function of the control inputs. Now, each particle provides a
sample of the future hybrid discrete-continuous state trajectory
as a function of the control inputs. Since JMLSs are a special
case of the uncertain linear dynamics (14), each particle is a
linear function of the control inputs.

C. Expected State Constraints

In step 4 of Table I, we approximate the expected state con-
straints as constraints on the sample mean of the particles. Since
the sample mean is a linear function of the control inputs, for
a polygonal feasible regions G, these constraints can be posed
as mixed integer linear constraints using “Big M” techniques
that follow a similar development to that in Section V-A. For
the sake of brevity, we omit the details here, but see [10].

D. Control Constraints

Since the controls u0:T −1 are deterministic, the constraint
u0:T −1 ∈ U can be handled without approximation using stan-
dard approaches for predictive control. For polygonal U , this
results to mixed-integer linear constraints; for details, see [10].



508 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 3, JUNE 2010

E. Cost Function

The optimal, chance-constrained control problem requires
that we minimize the expected cost E[h]. The true expectation
is given by

E[h] =
∫

h(u0:T −1 ,x1:T )p(x1:T )dx1:T . (29)

Since p(x1:T ) can be an arbitrary distribution, this integral is
intractable in most cases. We therefore approximate the expec-
tation using the sample mean as in (3), i.e.,

ĥ =
1
N

N∑
i=1

wih
(
u0:T −1 ,x

(i)
1:T

)
. (30)

This expression can be evaluated without integration, and con-
verges to the true expectation as the number of particles ap-
proaches infinity. Furthermore, since we assume that h is a
piecewise linear function of the state and control inputs, the
expression for ĥ in (30) is also piecewise linear.

F. Summary of Mixed-Integer Linear-Programming
Formulation

To summarize, the approximated stochastic predictive con-
trol problem defined in Section IV defines a constrained op-
timization problem. If the proposal distribution q(·) is chosen
so that the weights wi do not depend on the control inputs,
and the system to control is either linear or jump Markov lin-
ear, we can express the approximated chance constraint (10)
and the approximated expectation constraint (11) using linear
constraints on the control inputs. These constraints involve in-
teger variables that indicate whether a particular particle stays
within the feasible region. Furthermore, the approximated cost
function (30) is piecewise linear in the control inputs. Hence,
the chance-constrained particle control problem can be posed
as a mixed-integer linear program. The resulting optimization
finds the best sequence of control inputs, such that, at most, a
weighted fraction δ of the particles falls outside of the feasible
region. This weighted fraction approximates the probability of
the future state trajectory falling outside of the feasible region,
and as the number of particles tends to infinity, the approxi-
mation becomes exact. The optimality criterion and constraints
on the expected state are also approximated in terms of parti-
cles, and the approximation becomes exact as the number of
particles tends to infinity. While MILPs are worst-case expo-
nential, in the average case, they can be solved very quickly
using commercially available software [26], as we demonstrate
in Section VII.

VI. CHOOSING A PROPOSAL DISTRIBUTION

We now consider the problem of choosing a proposal dis-
tribution q(·). A considerable amount of work in estimation
has shown that the “best” proposal distribution depends heavily
on the particular problem being addressed, and a great deal of
work has focussed on developing proposal distributions for spe-
cific applications, for example, [22], [23] and [34]. This applies
equally to control problems.

A proposal distribution must meet the following criteria. First,
we must ensure that q(·) > 0 wherever p(·) > 0. Second, for
the optimization to be posed as an MILP, p(·)/q(·) cannot be
a function of the control inputs u. Third, we must be able to
sample from q(·).

These criteria are all met by the “fair” proposal distribution
q(·) = p(·). In Section VII-A and B, we show empirically that
the fair proposal distribution is effective in two different scenar-
ios that have only continuous dynamics. This is, however, not the
case for hybrid systems with low-probability mode transitions
such as failures. We demonstrate this empirically in Section VII-
C. The key insight is that these discrete jumps in the system dy-
namics have a large effect on the optimal, chance-constrained
control strategy, compared with the probability of such jumps
occurring. In this section, we design a proposal distribution that
addresses this problem.

We consider proposal distributions of the following factored
form:

q(x0 , ν0:T −1 , θ0:T −1) = p(x0 , ν0:T −1 |θ0:T −1)q(θ0:T −1). (31)

In other words, we use the fair distribution over initial state and
disturbances but use a proposal distribution q(θ0:T −1) defined
over mode sequences. To sample from this distribution, we first
generate samples of the mode sequence from q(θ0:T −1), and
for each sample θ

(i)
0:T −1 , we generate samples of x0 and ν0:T −1

from their true joint distribution. With this factorization, the
importance weight has a particularly simple form, i.e.,

wi =
p
(
x(i)

0 , ν
(i)
0:T −1 |θ

(i)
0:T −1

)
p
(
θ

(i)
0:T −1

)
p
(
x(i)

0 , ν
(i)
0:T −1 |θ

(i)
0:T −1

)
q
(
θ

(i)
0:T −1

) =
p
(
θ

(i)
0:T −1

)
q
(
θ

(i)
0:T −1

) . (32)

We must now choose q(θ0:T −1) in order to address the prob-
lem of low-probability mode sequences. In order to motivate
our choice of q(θ(i)

0:T −1), we present two unsuitable candidates.
First, consider a fair sampling approach:

q(θ0:T −1) = p(θ0:T −1). (33)

With this proposal, low-probability mode sequences are rarely
sampled. Such sequences include those where a particular com-
ponent, such as the brakes on a car, has transitioned into a
“failed” mode. In this case, the control sequence generated by
the particle control approach is strongly dependent on whether
a sequence with the “failed” mode is sampled. If no such brake
failure is sampled, the algorithm will not design a control se-
quence that is robust to such failures. The proposal (33) is unsuit-
able, because it yields a high probability that no fault transitions
will be sampled.

Next, consider a proposal equal to the pseudouniform dis-
tribution q(θ0:T −1) = U(θ0:T −1), where U(·) assigns an equal
probability to each mode sequence for which p(θ0:T −1) > 0.
More precisely

U(θ0:T −1) =
{

1/np , p(θ0:T −1) > 0
0, p(θ0:T −1) = 0 (34)

where np is the number of mode sequences for which
p(θ0:T −1) > 0. The use of this proposal ensures that sequences
involving faults are sampled with the same likelihood as the



BLACKMORE et al.: PROBABILISTIC PARTICLE-CONTROL APPROXIMATION 509

mode sequence without failures (which, in reality, has much
higher probability). This solves the problem of failure sequences
being sampled too infrequently. We assume for now that there is
only one mode sequence without failures, which we refer to as
the nominal mode sequence θnom

0:T −1 . The drawback in using this
proposal is that there is a significant likelihood that the nominal
mode sequence is not sampled. If this occurs, the deterministic
optimization will typically be infeasible; achieving most control
tasks requires a nonzero probability of the system components
operating nominally.

To address the problem of low-probability sequences, we
instead use the following “failure-robust” proposal:

q∗(θ0:T −1) =
{

Pnom , θ0:T −1 = θnom
0:T −1

1−Pn o m
np −1 , θ0:T −1 
= θnom

0:T −1
(35)

where

Pnom = 1 − (1 − λ)1/N (36)

and N is the number of particles. This proposal ensures that the
nominal mode sequence is sampled at least once with probability
λ, and shares the remaining probability space evenly among the
remaining mode sequences. This increases the probability of
sampling a failure sequence. In Section VII, we give an empirical
analysis that shows that this proposal distribution significantly
outperforms the fair proposal distribution (33) when there are
low-probability transitions such as failures. Note that, while we
have assumed here a single nominal sequence, the extension to
multiple nominal mode sequences is straightforward.

VII. RESULTS

In this section, we demonstrate the new particle control ap-
proach in simulation using three scenarios. In Section VII-A,
the method is used to control an aircraft within a flight enve-
lope in heavy turbulence, while in Section VII-B, the method is
used to generate chance-constrained, optimal paths for an air-
craft operating in an environment containing obstacles. These
scenarios do not consider component failures, and therefore, in
Section VII-C, the method is applied to the problem of ground
vehicle control with failure-prone brakes.

In each of these examples, the system dynamics are stable;
in the case of the aircraft examples, stability is provided by an
inner loop controller, while for the ground vehicle, stability is
provided by friction. As with all approaches that plan open-
loop control actions for stochastic systems, it is important that
either the system dynamics are stable or the planning horizon is
short relative to the disturbance covariance. If neither of these
hold, the system state covariance will typically grow to be too
large for there exist a feasible solution that satisfies the chance
constraints.

A. Chance-Constrained Predictive Control in a Convex
Feasible Region

The new particle control method was used to generate chance-
constrained predictive control inputs for an aircraft performing
an altitude change maneuver in turbulence. In this scenario,
successful execution means that the aircraft remains within a

Fig. 4. Path of particles for typical solution to flight envelope scenario. A total
of 100 particles were used, and the desired probability of failure is 0.1. Ten
particles fall outside of the flight envelope.

defined flight envelope. An example is shown in Fig. 4. Note
that the feasible region here is convex in the space of state
trajectories, and there is a convex constraint on each vector
x1 , . . . ,xT ; hence, the block vector x1:T is constrained to be in
a convex region.

For the aircraft model, we use the linearized longitudinal
dynamics of a Boeing 747 traveling at Mach 0.8. Since the angle
of attack of most aircraft is low in normal operation, linearizing
the dynamics about the equilibrium state or trim state of the
aircraft yields a good approximation to the true dynamics, which
can be used to develop control algorithms [33]. We assume that
there is an inner loop controller that issue elevator commands,
which is an altitude-hold autopilot. This controller consists of
a fixed-gain proportional full-state feedback controller that is
defined so that

at = K
(
xt − xr

t

)
, xr

t =
[
0 0 0 0 ut

]′
(37)

where at is the elevator angle at time step t, and ut ∈ � is the
desired altitude setpoint at time step t. The aim of the chance-
constrained predictive controller is to issue the altitude setpoint
commands ut to the autopilot in an optimal manner so that the
aircraft breaks the flight envelope with a probability of at most
δ. Using the controller in (37), the closed-loop dynamics of the
aircraft can be expressed in the discrete-time form of (14) with

A =




0.99 0.024 −1.20 −27.1 4.4E−3

−0.16 0.32 −10.0 −31.4 −0.029
2E − 6 1E − 6 0.013 0.011 1.5E−5

−1.8E−4 1.7E−4 −4.4E−3 −0.156 −1.3E−4

0.032 −1.04 20.3 1.02E3 0.9




(38)
and

B =



−4.48E−3

0.030
−1.5E−5

1.28E−4

0.079


 (39)
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where time increments of 2 s were used in the discretization,
and we have used aEb to denote a × 10b . We use a planning
horizon of 20 increments.

Disturbances due to turbulence have been studied extensively,
and are modeled as stochastic noise processes that are far from
Gaussian [4]. In this section, the process noise νt is drawn from
the Dryden turbulence model described in Military Specification
MIL-F-8785C [1]. We assume heavy turbulence, as defined in
MIL-F-8785C, with a low-altitude wind velocity of 25 m/s.

Optimality is defined in terms of fuel consumption, and we
assume the following relationship between fuel consumption h
and elevator angle at time t, i.e., at ,

h =
T −1∑
t=0

|at |. (40)

Since we assume that an inner loop controller issues elevator
angle commands, at depends on the disturbances that act on
the aircraft; for example, if a fixed altitude is commanded by
the predictive controller, the autopilot will issue larger elevator
commands in order to reject large disturbances than for smaller
ones. Since the disturbances are stochastic, we cannot directly
optimize the fuel consumption defined in (40). Therefore, we
instead optimize the expected fuel consumption E[h].

We impose a maximum elevator deflection of 0.5 rad, which
models actuator saturation. Again, since elevator deflection de-
pends on stochastic disturbances, we cannot prevent actuator sat-
uration with absolute certainty. We instead define a chance con-
straint, which, approximated using the particle control method,
ensures that actuator saturation occurs with at most a given
probability. In the results shown here, we define this proba-
bility to be zero, thereby ensuring that saturation occurs with
approximately zero probability. We do not explicitly model non-
linearities due to saturation, instead considering the plan to have
failed if saturation occurs.

The initial state distribution was generated using a particle
filter. The particle filter tracked the system state for ten time
steps, leading up to time t = 0, while the aircraft held altitude.
Observations of pitch rate and altitude were made subject to
additive Rayleigh noise [42]. This non-Gaussian noise means
that a particle filter will typically outperform a Kalman filter
[21]. The number of particles used for estimation was the same
as that used for control.

Fig. 4 shows a typical solution generated by the particle con-
trol algorithm for 100 particles. Here, we use the fair proposal
distribution q(·) = p(·), i.e., disturbance samples are generated
using the MIL-F-8785C turbulence model [1]. The desired prob-
ability of failure is 0.1, and ten particles fall outside of the flight
envelope.

The true probability of failure for a given plan was estimated
using 106 random simulations. Since the generated plan depends
on the values sampled from the various probability distributions,
40 plans were generated for each scenario. Fig. 5 shows the
results for a desired probability of failure of 0.1. It can be seen
that the mean probability of failure gets closer to the desired
value as the number of particles increases and that the variance
decreases. For 200 particles, the approximation is close; the
mean is 0.1073, and the standard deviation is 0.0191. Hence,

Fig. 5. True probability of failure against number of particles used to design
control inputs. The desired probability of failure was 0.1, shown as the dashed
line. The results shown are for 40 sets of designed control inputs, with the
solid line denoting the mean and the error bars denoting the standard deviation
of the probability of failure. As the number of particles increases, the mean
probability of failure approaches the desired probability of failure, and the
variance decreases.

Fig. 6. MILP solution time for particle control with Boeing 747 example. The
specified maximum probability of failure was 0.1.

the particle control algorithm can generate optimal solutions
to problems that are close to the full stochastic control problem
with relatively few particles. Fig. 6 shows the time taken to solve
the mixed-integer linear program for this example as a function
of the number of particles.

B. Chance-Constrained Vehicle Path Planning With Obstacles

The new particle control method was also applied to an un-
manned aerial vehicle (UAV) path-planning scenario with ob-
stacles, wind, and uncertain localization. In this scenario, suc-
cessful execution means that the UAV is in the goal region at the
end of the time horizon and that the UAV avoids all obstacles at
all time steps within the horizon.
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Previous work [49] has shown that, for the purposes of path
planning, an aircraft operating in a 2-D environment can be
modeled as a double integrator with velocity and acceleration
constraints. This model is based on the assumption that an inner
loop autopilot can be used to drive the UAV to a given way-
point, as long as the velocity does not go below a minimum
value or above a maximum value, and maximum acceleration
levels are not exceeded. Turn-rate constraints are handled con-
servatively using acceleration magnitude constraints. We use the
same aircraft model and assume a maximum aircraft velocity of
50 m/s, time steps of 1 s, and a planning horizon of 10 s. We
use a fixed-gain proportional full-state feedback controller for
the inner loop autopilot, which is defined such that

at = K
(
xt − xr

t

)
, xr

t =




ux,t

0
0

uy,t

0
0


 , ut

�
=

[
ux,t

uy ,t

]

(41)
where ut is the waypoint command at time step t, and at is
the acceleration vector applied to the double integrator aircraft
model at time step t. The aim of the chance-constrained pre-
dictive controller is to issue the waypoint commands ut to the
autopilot in an optimal manner so that the aircraft collides with
an obstacle with a probability of at most δ. After time discretiza-
tion, the closed-loop aircraft dynamics are given in the form of
(14) by

A =




1.1 −4.9 −6.8 0 0 0
0.59 −2.7 −4.1 0 0 0
−0.26 1.7 2.8 0 0 0

0 0 0 1.1 −4.9 −6.8
0 0 0 0.59 −2.7 −4.1
0 0 0 −0.26 1.7 2.8


 (42)

and

B =




0.57 0
0.053 0
−0.044 0

0 0.57
0 0.053
0 −0.044


 . (43)

Uncertain disturbances, due to wind, act on the UAV. We use the
Dryden wind model with a low-altitude wind speed of 15 m/s
and light turbulence, which is as defined in MIL-F-8785C. We
assume an inner loop controller that acts to reject disturbances.
As described in Section VII-A, uncertainty in localization leads
to uncertainty in the initial position of the UAV. The obstacle
map used is shown in Fig. 7. Optimality was again defined in
terms of fuel consumption, which we assume is related to input
acceleration as follows:

h =
T −1∑
t=0

{
|ax,t | + |ay,t |

}
at

�
=

[
ax,t

ay ,t

]
(44)

where ax,t and ay,t are the commanded accelerations at time
t in the x- and y-directions, respectively. In order to reduce

Fig. 7. Path of particles for typical solution to UAV path-planning problem
for a probability of failure of 0.04. Obstacles are in blue, while the goal is in red
and dashed. At this level of conservatism, the aircraft is able to pass through the
narrow corridor. The particle control method ensures that at most two particles
out of 50 collide with the obstacles (inset). This solution has a fuel cost of 73.98.

Fig. 8. Path of particles for typical solution to UAV path-planning problem
for a probability of failure of 0.02. Obstacles are in blue, while the goal is in red
and dashed. At this level of conservatism, the aircraft no longer passes through
the narrow corridor but goes around the largest obstacle. This solution has a fuel
cost of 74.72. Hence, the reduced probability of failure comes at the expense of
fuel.

the solution time of the resulting MILP problem, we em-
ployed an iterative deepening technique, which is described
in the Appendix. As in Section VII-A, we use a fair proposal
distribution.

Results for the scenario are shown in Figs. 7 and 8. Fifty
particles were used for these examples. Fig. 7 shows that if a
probability of failure of 0.04 or above is acceptable, the planned
path of the UAV can go through the narrow corridor at (−50,
200). It can be seen that exactly two particles collide with the ob-
stacles as expected. For a lower probability of failure, however,
the planned path is more conservative, as shown in Fig. 8. This
path avoids the narrow corridor at the expense of fuel efficiency.
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Fig. 9. Ground-vehicle brake-failure scenario. The expected vehicle position
must arrive at the goal in the minimum possible time while avoiding collision
with the wall.

C. Chance-Constrained Control With Component Failures

The new particle-control method was applied to a ground-
vehicle brake-failure scenario. In this scenario, the wheeled ve-
hicle starts at rest at a distance of 8 m from its goal. The vehicle
can apply acceleration and braking inputs. The brakes can fail,
however, in which case braking has no effect. The vehicle’s ex-
pected position, conditioned on nominal brake operation, must
arrive at the goal in the minimum possible time. Overall failure
of the plan is defined as collision of the vehicle with a wall,
which is situated 4 m past the goal. The situation is illustrated
in Fig. 9.

The vehicle is modeled as a JMLS with two operational
modes, such that θt ∈ {1, 2}. In mode 1, θ = 1 and the brakes
are functional, while in mode 2, θ = 2 and braking has no effect,
i.e.,

A(1) = A(2) =
[

0.9 0
1 1

]
B(1) =

[
1 −1
0 0

]

B(2) =
[

1 0
0 0

]
. (45)

The transition matrix, which is as defined in (28), is given by

T =
[

0.999 0.001
0.0 1.0

]
. (46)

The controls issued by the chance-constrained predictive con-
troller are defined by

ut =
[

aa,t

ab,t

]
(47)

where aa,t ≥ 0 is the commanded acceleration, and ab,t ≥ 0
is the commanded deceleration due to braking. The switching
dynamics in (45) and (46) mean that if the brakes are functional,
at every time step, there is a probability of 0.001 that they
become faulty. Once faulty, the brakes remain faulty. The brakes
are initially functional, and the initial vehicle state is known
exactly; however, random acceleration disturbances act on the
vehicle. Also, frictional forces proportional to velocity act to
decelerate the vehicle. A planning horizon of 20 time steps was
used with time intervals of 1 s.

The particle controller must generate control inputs that are
robust to both continuous disturbances and the possibility of
brake failure. Intuitively, the optimal strategy heavily depends
on the desired level of conservatism. A race car driver, who can
tolerate a relatively high probability of failure, would accelerate
as hard as possible and brake as hard as possible to achieve
the minimum time solution. A bus driver, on the other hand,
must achieve a probability of failure of close to zero and would

Fig. 10. Typical solution for a maximum probability of failure of 0.01 with
100 particles. The vehicles arrives at the goal within 6 s but will collide with the
wall if a brake failure occurs. This particular solution gives a true probability of
failure of approximately 0.006.

Fig. 11. Typical solution for a maximum probability of failure of 10−6 with
100 particles. The vehicle travels more slowly and arrives within 9 s, which
is later than with the more aggressive solution. In the case of brake failure,
however, friction brings the vehicle to rest before collision with the wall. This
solution is therefore robust to brake failure, giving a probability of failure of
approximately 1.0× 10−6 .

therefore accelerate more slowly and brake more gradually. Both
of these strategies are generated by the particle control method.
Fig. 10 shows a typical solution generated by the particle control
approach for a maximum probability of failure of 0.01 using the
proposal distribution (35). Fig. 11 shows a typical solution for a
maximum probability of failure of 10−6 . The more conservative
solution takes 9 s, while the more aggressive solution takes only
6 s.

We now demonstrate that the failure-robust proposal distri-
bution (35) enables the particle controller to take into account
the low-probability brake failures. Fig. 12 shows a typical so-
lution generated by using a fair proposal distribution. In this
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Fig. 12. Typical solution with fair proposal distribution for a maximum prob-
ability of failure of 10−6 with 100 particles. (Top) Planned particle distribution.
Because no particles have sampled the brake failure, the controller plans ag-
gressively. (Bottom) Monte–Carlo simulations of true-state trajectory. In reality,
there is a probability of approximately 0.0050 that a brake failure occurs at or
before t = 5 s, which causes the vehicle to collide with the wall.

Fig. 13. Typical solution with failure-robust proposal distribution for a maxi-
mum probability of failure of 10−6 , with 100 particles. (Top) Planned particle
distribution (importance weights not shown). Many particles have sampled brake
failures, and hence, the controller plans to take brake failures into account. (Bot-
tom) Monte–Carlo simulations of true-state trajectory. The vehicle collides with
the wall with a probability of approximately 1.0× 10−6 .

case, the algorithm did not sample any of the failure transitions
and, therefore, has generated an inappropriately aggressive con-
trol policy that does not take into account the possibility of
brake failure. Fig. 13 shows a typical solution generated by us-
ing the failure-robust proposal. By increasing the probability of
sampling failure transitions, the importance weighting has taken
into account brake failure, thus generating an appropriately con-
servative plan. Fig. 14 compares the fair proposal distribution
approach against the failure-robust proposal in terms of the true
probability of failure. In this example, the desired probability
of failure was 10−6 . The failure-robust proposal achieves a true
probability of failure dramatically closer to the desired value
than the fair proposal. In addition, note that for larger particle

Fig. 14. True probability of failure against number of particles for fair proposal
and failure-robust proposal. The desired probability of failure was 10−6 . The
failure-robust proposal achieves a true probability of failure dramatically closer
to the desired value than the fair sampling case. With a very small particle set,
the effect of the failure-robust proposal is diminished since the probability of
sampling the nominal sequence must be high in order to satisfy constraints on
the probability of a feasible solution.

Fig. 15. MILP solution time for ground-vehicle problem. The specified max-
imum probability of failure was 0.01.

sets, the fair proposal approaches the failure robust one, except
that the variance is much greater in the fair-proposal case. This
is because on the rare occasion that brake failure transitions are
sampled, the solution is very different from the average case.
This variance is particularly undesirable for control. The MILP
solution times for this example are shown in Fig. 15.

VIII. COMPARISON WITH MONTE–CARLO MARKOV

CHAIN METHODS

One alternative approach to chance-constrained control with
non-Gaussian uncertainty and continuous decision variables was
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previously proposed by Lecchini-Visintini et al. [29]. This ap-
proach uses an MCMC framework [45] to find an approximately
optimal control input through simulation-based optimization.
This works by estimating the distribution of a random variable,
which is constructed so that the peaks of the distribution coin-
cide with the optimal decision value. The estimation process is
then carried out by MCMC [45]. In this section, we first discuss
differences between the two approaches and then provide a per-
formance comparison.

MCMC has two main advantages over the new particle control
approach. First, it is not restricted to linear system dynamics,
and second, the distributions of the uncertain variables can be
functions of the state and control inputs. However, there are two
key disadvantages. The first is that the convergence of MCMC is
sensitive to a number of parameters. These parameters must be
tuned carefully by hand to achieve good performance, which is
a process that was presented in [29] and takes several iterations.
Second, MCMC is more computationally expensive than our
MILP approach for the Boeing 747 altitude envelope problem
described in Section VII-A, as we show in this section.

The MCMC optimization approach proposed in [29] converts
a chance-constrained problem to an unconstrained stochastic op-
timization problem that penalizes constraint violation. Applying
this approach to problem 1, the cost function is

h̃(u0:T −1 ,x1:T ) =
{

e−h(u0 :T −1 ,x1 :T ) + Λ, x1:T ∈ F
1, x1:T /∈ F

(48)

where Λ is a parameter used to reward constraint satisfaction.
It is shown in [29] that the maximizer of (48) will satisfy the
original chance constraint p(x1:T /∈ F ) ≤ δ if Λ is chosen, such
that

Λ =
1 − P̂

δ − P̂
(49)

where P̂ is the probability of constraint violation for some
known feasible solution. To minimize suboptimality, P̂ should
be minimized.

The MCMC approach proposed in [29] was applied to the
Boeing 747 problem described in Section VII-A with a maxi-
mum probability of failure of δ = 0.1. We were able to find a
feasible solution with P̂ = 5 × 10−5 , which gives Λ = 10.0045.
We used a uniform proposal distribution for the altitude set-
points u0:T −1 , with minimum and maximum values of 19750
and 21750 ft, respectively. These values were chosen since they
are the minimum and maximum values of the flight path enve-
lope. The cost h(·) was as defined in (40), and the constraints
were defined by the flight envelope shown in Fig. 4. The MCMC
approach generates J independent samples of the random vari-
ables per iteration. A larger J is more computationally intensive,
but concentrates the resulting distribution around the optimal so-
lution. We varied J from 1 to 50 in our experiments. MCMC
uses a “burn-in” period to allow the Markov chain to reach a
stationary distribution. Samples obtained during this period are
discarded. We used a “burn-in”period of one-tenth of the total
number of iterations.

Fig. 16 shows the best solution obtained by using the MCMC
approach either after 10 000 iterations or 13.4 h of computation.

Fig. 16. Best MCMC solution after 10 000 iterations or 13.4 h of computation.
The solution is feasible but has a cost of 16.3 compared with particle control’s
average cost of 1.84.

The best solution was obtained by using J = 10. After these
iterations, the solution is feasible but has a very high cost of
16.3 compared with the particle control’s average cost of 1.83.
This high cost is due to the unnecessary altitude changes that can
be seen in Fig. 16. The true probability of failure was estimated
using 106 Monte–Carlo simulations to be approximately zero,
which indicates a high degree of conservatism in the plan.

The particle control approach proposed in this paper solves
this problem in seconds for reasonable levels of approximation
error (see Figs. 5 and 6) and achieves a much lower cost. The
particle control approach is therefore more computationally effi-
cient that the MCMC approach of Lecchini-Visintini et al. [29].
We acknowledge that it might be possible to improve the perfor-
mance of MCMC by further manual tuning of the optimization
parameters; however, our attempts to do so did not yield any im-
provement. Furthermore, the necessity for manual tuning makes
the MCMC approach less appropriate for autonomous robotic
applications. For J = 1 and J = 5, for example, MCMC did
not find a feasible solution after 10 000 iterations.

IX. COMPARISON WITH SCENARIO METHOD

Another approach to solve chance-constrained convex opti-
mization problems was proposed by Calafiore and Campi [14].
This scenario approach can be applied to chance-constrained
predictive control problems with non-Gaussian noise and linear
system dynamics. Unlike the particle control approach presented
in this paper, the scenario approach is limited to convex feasible
regions. In this section, we compare the two approaches for a
problem with a convex feasible region, and discuss key differ-
ences between the algorithms. The key idea behind the scenario
method of [14] is to generate samples of the uncertain variables,
which are referred to as scenarios, and to ensure that the con-
straints are satisfied for all scenarios. Calafiore and Campi [14]
provide an elegant bounding result that specifies how many
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scenarios are sufficient to ensure that the chance constraints are
satisfied with a certain confidence. Letting the state sequence
for each scenario be denoted by x(i)

1:T , the result then specifies
that

x(i)
1:T ∈ F, i = 1, . . . , Ns =⇒ p

(
p(x1:T /∈ F ) ≤ δ

)
≥ β

(50)
where Ns is the number of scenarios specified by the analytic re-
sult of Calafiore and Campi [14], as a function of the confidence
parameter β, the chance constraint value δ, and the dimension
of the problem.

The scenario method and the particle control method take
two different approaches to deal with the intractability of the full
chance-constrained problem stated in Section II. Although parti-
cle control approximates the chance-constrained problem using
samples, the scenario method bounds the chance-constrained
problem using samples. Bounding and approximation are two
common solutions to deal with intractable problems. Bounding
techniques have the advantage of guaranteeing that constraints
are satisfied, while approximation techniques often do not. How-
ever, if the bound used is too loose, the solution returned by the
bounding approach can be highly conservative, thereby leading
to excessive cost and even infeasibility [37]. We now show em-
pirically that this is indeed the case when comparing the scenario
approach of Calafiore and Campi [14] and the particle-control
approach presented in this paper.

We used the scenario approach of Calafiore and Campi [14]
to solve the aircraft altitude control problem described in
Section VII-A. The maximum probability of failure was set to
δ = 0.1, and the confidence parameter was set to β = 0.999. For
these parameters, the analytic result of Calafiore and Campi [14]
specifies that Ns = 1439 scenarios are sufficient to ensure that
the chance constraints are satisfied with high probability. Since
the plan generated depends on the sampled values, we ran the
scenario approach 40 times. The true probability of failure of
the solution was estimated using 106 Monte–Carlo simulations.
The mean probability of failure was 5.2× 10−4 , and the vari-
ance was 5.4× 10−4 . Hence, on average, for this example,
the scenario approach gives a probability of failure almost 200
times less than the allowable value, which indicates a high de-
gree of conservatism. As shown in Fig. 5, particle control with
200 particles has an average probability of failure of 0.107 and
a variance of 0.019. Although the approximation technique of
particle control does not provide guarantees that the chance con-
straints are satisfied, it avoids the conservatism of the bounds
used in the scenario technique. This is further reflected in the
cost of the solution, which for the scenario approach has an
average of 2.07 and for particle control has an average of 1.84.

X. CONCLUSION

In this paper, we have presented a novel approach to optimal,
chance-constrained stochastic control that takes into account
probabilistic uncertainty due to disturbances, uncertain state es-
timation, modeling error, and stochastic mode transitions, so
that the probability of failure is less than a defined threshold δ.
Although we did not consider uncertainty in the feasible region,

the extension is straightforward; this can be used to model, for
example, uncertainty in obstacle location. The new method ap-
proximates the original stochastic problem as a deterministic one
that uses a number of particles. By controlling the trajectories
of these particles in a manner optimal with regard to the approx-
imated problem, the method generates approximately optimal
solutions to the original chance-constrained problem. Further-
more, the approximation error tends to zero as the number of
particles tends to infinity. By using a particle-based approach,
the new particle control method is able to handle arbitrary prob-
ability distributions. We demonstrate the method in simulation
and show that the true probability of failure tends to the desired
probability of failure as the number of particles used increases.
Furthermore, the time taken to find the globally optimal solu-
tion is significantly less than the existing MCMC approaches to
chance-constrained control.

APPENDIX

Here, we describe the approach used to reduce the
time required for the UAV obstacle avoidance problem in
Section VII-B. This approach reduces the average solution time
while still guaranteeing that the globally optimal solution is
found, if one exists. The key observation is that, since the so-
lution time for MILP is exponential in the size of the problem,
solving many small MILPs is faster than solving one large one.
Our approach uses this, i.e., to solve many small MILPs instead
of one large one, while still guaranteeing that, eventually, the
returned solution is the globally optimal, feasible solution to the
full MILP. This is inspired by iterative-deepening approaches
used in graph search [48]. We use fullMILP to denote the
MILP encoding the entire chance-constrained particle-control
problem. The approach proceeds as follows.

1) InitializesubMILP as having one randomly chosen particle
from fullMILP and no obstacles, i.e., k ← 0.

2) Solve subMILP to global optimality to get the solution
Solution (k).

3) Check whether all constraints in fullMILP are satisfied
by Solution (k).

4) If yes, return Solution (k) and stop.
5) If no, check if subMILP=fullMILP. If yes, return

infeasible. Otherwise, add to subMILP, the particle
and the obstacle in fullMILP with the greatest constraint
violation.

6) k ← k + 1. Go to Step 2.
Since constraints are only added to subMILP and never re-

moved, we know that the cost of each successive solution
Solution (k) cannot decrease. Therefore, once Solution (k)
is a feasible solution to fullMILP, we know that Solution (k)
is the globally optimal, feasible solution to fullMILP. Con-
straints and particles are added until a feasible solution to
fullMILP is found or subMILP=fullMILP, in which case,
we know no feasible solution to fullMILP exists. Hence, the
iterative-deepening procedure described earlier guarantees to
find the globally optimal solution if one exists. In practice, we
found that the approach enables the solution to be found much
more quickly than simply solving fullMILP directly.
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