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Abstract— Autonomous vehicles need to plan trajectories
to a specified goal that avoid obstacles. Previous approaches
that used a constrained optimization approach to solve for
finite sequences of optimal control inputs have been highly
effective. For robust execution, it is essential to take into account
the inherent uncertainty in the problem, which arises due to
uncertain localization, modeling errors, and disturbances.

Prior work has handled the case of deterministically bounded
uncertainty. We present here an alternative approach that
uses a probabilistic representation of uncertainty, and plans
the future probabilistic distribution of the vehicle state so
that the probability of collision with obstacles is below a
specified threshold. This approach has two main advantages;
first, uncertainty is often modeled more naturally using a prob-
abilistic representation (for example in the case of uncertain
localization); second, by specifying the probability of successful
execution, the desired level of conservatism in the plan can be
specified in a meaningful manner.

The key idea behind the approach is that the probabilistic
obstacle avoidance problem can be expressed as a Disjunctive
Linear Program using linear chance constraints. The resulting
Disjunctive Linear Program has the same complexity as that
corresponding to the deterministic path planning problem
with no representation of uncertainty. Hence the resulting
problem can be solved using existing, efficient techniques, such
that planning with uncertainty requires minimal additional
computation. Finally, we present an empirical validation of
the new method with a number of aircraft obstacle avoidance
scenarios.

I. INTRODUCTION

Path planning for autonomous vehicles such as Unmanned
Air Vehicles (UAVS) has received a great deal of attention
in recent years [1][2][3][4]. UAVs need to be able to plan
trajectories that take the aircraft from its current location to
a goal, while avoiding obstacles. These trajectories should
be optimal with respect to a criterion such as time or fuel
consumption.

This problem is challenging for two principal reasons.
First, as noted by [3], the optimization problem is inherently
non-convex. Second, there are a number of sources of
uncertainty in the problem, such as modeling uncertainty,
disturbances, and uncertain localization. Planning under un-
certainty is a particularly challenging problem that is cur-
rently of great interest [5][6].

Previous approaches addressed the first of these chal-
lenges; [7] introduced a Mixed-Integer Linear Programming
approach that designs fuel-optimal trajectories for vehicles
modeled as linear systems. The Mixed-Integer Linear Pro-
gramming approach uses a Branch and Bound [8] technique
to make the non-convex optimization problem tractable. [9]
and [3] extended this approach to solve problems in aircraft
and spacecraft trajectory planning. By including temporally

flexible state plans, [10] was able to generate optimal tra-
jectories for UAVs with time-critical mission plans. [11]
showed that using Disjunctive Linear Programming [12]
rather than Mixed-Integer Linear Programming, and using
conflicts [13] to guide the search process leads to more
efficiency in solving the optimization problem. As an al-
ternative to these constrained optimization approaches, [14]
used a randomized learning-and-query approach known as
Probabilistic Roadmaps.

These approaches do not, however, take into consideration
uncertainty. This limits the effectiveness of these approaches
for applications such as UAVs for three main reasons. First,
aircraft location is not usually known exactly, but is estimated
using a stochastic system model, inertial sensors and/or
a Global Positioning System. In this case, the estimated
location of the aircraft is expressed as a distribution such as a
Gaussian. Deterministic trajectory design does not take into
account the uncertainty in aircraft position. Second, system
models are approximations of the true system model, and the
system dynamics themselves are usually not fully known.
Third, disturbances act on the aircraft that make the true
trajectory deviate from the planned trajectory. These existing
approaches are not robust to these disturbances, meaning that
aircraft can collide with obstacles while executing a plan that
was designed to prevent collisions.

On the other hand, uncertainty was handled by [15] and
[16] in the trajectory planning problem, for the case of
uncertainty with known bounds. In the case of disturbances
this corresponds to having a known bound on the magnitude
of the disturbance. Robustness is achieved by designing
trajectories that guarantee feasibility of the plan as long as
disturbances do not exceed these bounds.

Here, we use an alternative approach that characterizes
uncertainty in a probabilistic manner and designs control
inputs accordingly. In the deterministic optimal trajectory
design problem, an optimized sequence of control inputs is
designed so that a system passes through a sequence of pre-
dicted states that minimize some cost function (for example
the time taken to reach a goal state). In the probabilistic path
planning problem, we design an optimal sequence of control
inputs so that the system passes through a trajectory of state
distributions that ensure that the probability of successful
execution is at least a specified value.

The probabilistic approach to robust path planning with
obstacles has a number of advantages over a horm-bounded
approach. First, vehicle localization techniques often use a
Kalman filter to determine location from inertial sensors
or GPS, and these estimate a probabilistic distribution over



possible locations. Second, random noise processes are nat-
ural models for disturbances caused, for example, by wind,
where it may be easier to determine the expected value
of the disturbance magnitude rather than an absolute upper
bound. Finally, by specifying the probability that a plan is
executed successfully, we can stipulate the desired level of
conservatism in the plan in a meaningful manner.

Recent work in probabilistic model predictive control [17]
developed methods for designing optimal sequences of con-
trol inputs subject to linear chance constraints; these ensure
that linear constraints are satisfied with a certain probability.
We extend this work to show that the problem of probabilistic
path planning with obstacles can be expressed as a Disjunc-
tive Linear Program and solved using the same techniques
that have been shown to be effective for path planning
without uncertainty. The key insight is that the probability
of colliding with an obstacle can be upper bounded using
a disjunction of linear chance constraints. With our method,
these chance constraints are then converted to deterministic
linear constraints [18] in order to yield a Disjunctive Linear
Program that can be solved using techniques such as those
developed by [11], with similar computational complexity as
the original path planning problem, without uncertainty.

We demonstrate the method using a number of aircraft
trajectory planning scenarios, and present an empirical anal-
ysis of the approach. The results show that the method gives
a dramatic increase in robustness compared to an approach
that does not take into account uncertainty. \We show how
conservatism can be traded off against fuel efficiency. Fi-
nally, we show that the method is conservative, and that
the conservatism increases approximately linearly with the
number of obstacles in the map.

Il. PROBLEM STATEMENT

In this section we define the probabilistic path planning
problem as follows:

Given a probability distribution for the initial
vehicle position, and given a desired goal position,
design a finite, optimal sequence of control inputs
ug...ux_1 such that the expected final vehicle
position corresponds to the goal position. Take
into account uncertainty such that collision with
any obstacle at a given time step occurs with at
most a probability of A.

Here, optimality can be defined in terms of minimizing fuel
consumption or time, for example.

In solving this problem we make two main assumptions.
First, the vehicle can be modeled as a linear system. Prior
work (for example [7] and [9]) has shown that linear system
models can be used to design trajectories for vehicles such
as UAVs and satellites. Second, the sources of uncertainty in
the problem can be described as additive Gaussian noise with
known statistics. This assumption is justified in Section I1-A.

A. Sources of Uncertainty

In this work, we consider the case where there is uncer-
tainty in the problem that can be described probabilistically.
We consider three sources of uncertainty:

1) The initial position of the vehicle is specified as a prob-
abilistic distribution over possible positions. Vehicle
position and dynamic state are typically estimated from
inertial sensors or global positioning data, and hence
are not known exactly. Instead estimation techniques
such as Kalman filtering or least squares estimation
specify a Gaussian distribution over system state. In
this work we assume that the initial position of the
aircraft is specified as a Gaussian distribution, and that
a Gaussian filtering technique such as a Kalman Filter
is used to estimate the location of the aircraft on-line.

2) The system model is not known exactly. Uncertainty
in the system model may arise due to modeling errors
or linearization. As in many stochastic estimation and
control techniques this uncertainty may be modeled as
a Gaussian white noise process added to the system
dynamic equations [19].

3) Disturbances act on the vehicle. These are modeled
as an additional Gaussian noise process added to the
system dynamics. In the case of an aircraft, this process
represents accelerations caused by wind. The standard
deviation of this Gaussian process is the expected
absolute value of the disturbance acceleration.

We assume a linear, discrete-time system model in a
similar manner to [7]:

Xt41 = AXt + But + wy + V. (l)

Here, w is a Gaussian white noise process that represents
model uncertainty, and is distributed according to w; ~
N (0, Q). The Gaussian white noise process » models distur-
bances, and is distributed according to v; ~ AN(0, R). The
assumption of zero mean, white noise is made for modeling
simplicity; the methods described in this paper apply equally
to colored, non-zero mean noise as long as the statistics are
known.

I1l1. PROBABILISTIC PATH PLANNING AS DISJUNCTIVE
LINEAR PROGRAMMING

In this section we show that the probabilistic path planning
problem described in Section Il can be posed as a Disjunctive
Linear Program. The key insight is that the obstacle avoid-
ance problem can be reformulated using chance constraints,
and then these chance constraints can be expressed as linear
constraints, giving rise to a disjunctive linear program.

A. Probabilistic Path Planning

In deterministic path planning, we predict the future state
of a vehicle given a particular sequence of control inputs.
This prediction, evaluated against some optimality criterion,
is used to optimize the control inputs. In order to plan a path
for a vehicle under uncertainty, we must be able to predict the



future distribution of the vehicle’s position, given a particular
sequence of control inputs [17].

In Section 1l we assumed that the initial state has a Gaus-
sian distribution N (X, P), that the system dynamics are
linear, and that there are additive Gaussian white noise pro-
cesses corresponding to model uncertainty and disturbances.
Under these assumptions, the distribution of the future state
is also Gaussian, i.e. p(X¢|uo,  x1) ~ N(us, ). By
recursive application of the system equations the distribution
of the future state can be calculated exactly as:
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There are two important properties to note here:

1) The equation for the mean of the state at time ¢ is
linear in the control inputs ug, ..., u;_1

2) The covariance of the state at time ¢ is not a function
of the the control inputs uy, . . . , u;_1. This means that
for a given initial state covariance, and with known
noise covariances, the covariance at a future time is
known exactly.

These two properties enable the obstacle avoidance prob-
lem to be framed as a Disjunctive Linear Program, as will
be shown in Section Il1-D.

B. Obstacle Avoidance using Linear Chance Constraints

In this section we show that the probabilistic obstacle
avoidance criterion in Section Il can be expressed conser-
vatively using linear chance constraints.

Chance constraints were previously used by [20] in robot
trajectory planning without obstacles, where the uncertainty
was due to unknown system parameters; chance constraints
were used to prevent the joint angles and joint velocities
from going outside allowable limits. [17] used linear chance
constraints for finite horizon control design, and showed
that uncertainty due to state estimation, disturbances and
modeling errors can be handled in one unified framework.
We extend this work to path planning with obstacles.

A convex polyhedral obstacle, such as that shown in
Fig. 1 is defined using IV straight-line segments. The vehicle
collides with the obstacle at time step ¢ if its position is
within the obstacle, in other words if (4) is satisfied.

/\ a;-TXt < b;. (4)
i=1,...,N
Hence the condition defining collision with a given obstacle
is a conjunction of linear constraints on the position of the
vehicle.

Fig. 1. Two-dimensional obstacle modeled as a convex polyhedron. The
vectors ag,...,apn are the unit outward normals to the NV line segments
that define the obstacle.

Fig. 2. Predicted distribution of X, shown as mean u: and covariance
ellipse X3¢, in relation to obstacle. The probability of satisfying the constraint
a;.th < b; is the integral of this distribution over the region AU B, which
is greater than or equal to the integral over the region A, the probability of
collision.

In the probabilistic path planning problem, the future
position of the vehicle at time ¢ is a random variable, which
we denote X,. Under the assumptions in Section I, X, is a
Gaussian defined by a mean i, and covariance X;. The key
insight to posing obstacle avoidance using chance constraints
is that the probability of any of the linear constraints in
(4) being satisfied is an upper bound on the probability of
the vehicle colliding with the obstacle. This is illustrated in
Fig. 2.

In general, for a convex polyhedral obstacle defined by NV
line segments,

i=1,...,N p(collision) < p(al X; < b;)  (5)

Hence the requirement:

Probability of collision with a given obstacle at
a given time step ¢ is less than or equal to 0,

can be expressed conservatively as a disjunction of linear
chance constraints on the position of the vehicle at time
step t:



p(X <0)=0.1
S -
0 41 =1.163
Fig. 3. Univariate Gaussian distribution with mean x and variance 1. For

fixed variance, the chance constraint p(X < 0) < 0.1 is satisfied if and
only if 4 > 1.163

\ p@lxi<b)<d (6)

Note that for non-convex obstacles, the inequality in (5)
does not apply, and hence we restrict our attention to convex
polyhedral obstacles.

C. Linear Chance Constraints as Deterministic Linear Con-
straints

In this section, we show that linear chance constraints on
the position of the vehicle at time ¢, can be expressed as
deterministic linear constraints on the mean of the vehicle
position at time ¢ [18].

First, consider the univariate Gaussian random variable X
shown in Fig. 3, which has mean y and variance ¢ = 1, and
the chance constraint p(X < 0) < 0.1.InFig. 3, p(X < 0) is
exactly 0.1 for 4 = 1.163. Note that, if the variance is fixed,
p(X < 0) <0.1if and only if x> 1.163. Hence the chance
constraint on the random variable X, p(X < 0) < 0.1, can
be translated into a deterministic constraint on the mean p if
the variance o2 is known. In this case, for a variance of one,
the corresponding deterministic constraint is x4 > 1.163.

In general, a chance constraint on a singlevariate Gaussian
random variable X ~ N(u, o%) with fixed variance but vari-
able mean, can be translated into a deterministic constraint
on the mean:

p(X <0)<d<=pu>c O

The value of the deterministic constraint ¢ is calculated as
follows:

c=V20-erf 11 -26), (8)
where erf is defined as:
erf(z) = % /OZ e dt. 9)

The inverse of erf can be calculated using a look-up
method. Note that only one look-up table is required for
any Gaussian distribution. For (8) to be valid, we assume
that the probability ¢ is less than 0.5.

Now consider the case of a multivariate Gaussian random
variable X, corresponding to the position of the vehicle at
time ¢, which has mean ., and covariance X;, and the linear
chance constraint p(a” X; < b) < 4. The event a” X; < b is

Fig. 4. Linear constraint and vehicle position X;. V' is the distance between
the constraint and the vehicle, defined as positive for values of X; for
which the constraint is satisfied, and negative for value of X; for which the
constraint is violated. The vector a is the unit normal in the direction of
positive V.

equivalent to the event V' < 0, where V' is the perpendicular
distance between the constraint a”’x = b and x, as shown in
Fig. 4.

The random variable V' is a derived variable of the
multivariate random variable X;. It can be shown that V'
is a univariate Gaussian random variable, with mean p,, and
variance o, where:

Moy = aTMt —b, (10)
and
oy = VaTY,a. (11)

The linear chance constraint p(a” X; < b) < ¢ is therefore
equivalent to a chance constraint p(V < 0) < § on the
univariate Gaussian random variable V. As described previ-
ously in this section, this can be expressed as a deterministic
constraint on the mean, of the form ., > ¢, where ¢ is given
by (8), with ¢ = o,.

Expressing this deterministic constraint in terms of the
original variable X, yields:

p(@T’X, <b)<d<=alu —b>c, 12)
where:
c=+/2alT%a-erf (1 —20). 13)

This calculation requires knowledge of X4, the covariance
of the state at time ¢. In Section I11-A we showed that X,
does not depend on the control inputs, and therefore given
an initial state covariance and the noise process covariances,
we can calculate X, using (3).

Hence linear chance constraints on the position X, of the
vehicle at time ¢, can be expressed as deterministic linear
constraints on the expected position, j;, of the vehicle at time
t. This means that the disjunction of linear chance constraints
(6) can be expressed as a disjunction of deterministic linear
constraints on the mean of the vehicle position:

T
\/ a; ue — b > ¢
i=1,..,N

(14)



D. Handling Multiple Obstacles
The previous sections showed that the requirement:

Vehicle collides with a given obstacle A at time ¢
with probability at most 6,

can be expressed as a disjunction of deterministic linear
constraints on the mean of the vehicle position at time ¢. The
problem statement in Section II, however, requires that the
vehicle collide with any obstacle at time ¢ with probability
of at most A.

In general, for two events A and B:

p(AUB) < p(A) + p(B),

Therefore we specify the following constraint for all
obstacles O; € {O1,02,...,0x} and for all time steps
t; € {t1,...,tx} in the planning horizon:

Collide with obstacle O; at time t¢; with
probability at most £-.

(15)

Let C be the event that collision occurs with any obstacle
time step ¢ in the planning horizon, and D; be the event that
collision occurs with obstacle O; at time ¢. Then following
from the new constraint and (15),

M M A
pO) <D p(Di) <Y =47 (16)
i=1 i=1

as required.

Note that a similar method could be used to handle the
case where the problem statement requires the probability of
collision over the entire planning horizon to be constrained,
by dividing A by the number of time steps in the horizon.

1V. DLP SUMMARY

The problem formulation in Section Il therefore gives rise
to the following constraints on the mean and covariance of
the distributions of X to X.:

1) Goal requirement: The expectation of X; must be the

goal g.
He =8 17)
2) Obstacle avoidance: For each time step ¢t = 1,...,k
and for each obstacle j =1,..., M,
\/ a;?g-ut —bij > cij. (18)

i=1,...,N;

Here, each obstacle j is defined by N; constraints of
the form al-zj < b;;. The value ¢;; is calculated as in
(13) with § = £.

We now show that these constraints are linear in the
control inputs ug,...,ux_1. First, we address the goal
requirement. Using (2) to calculate the mean of the final
state, it follows that:

k—1
M = Z Ak_i_lBui + Akfco.
1=0

(19)

Since this is linear in the control inputs, the constraint p; =
g is linear in the control inputs.

The obstacle avoidance requirement gives a conjunction
of disjunctions of linear inequality constraints on pu; for
t =1...k, as shown in (18). Note that the value ¢;; does
not depend on the control inputs. The predicted means
are linear in the control inputs, as shown in (2). Hence the
obstacle avoidance requirement is linear in the control inputs.

Finally, both the minimum time and minimum fuel op-
timality criteria can be expressed linearly. The minimum
fuel criterion, as described by [3], can be used without
modification. The minimum time criterion described by [9]
can be modified so that the time for the expected vehicle
position to reach the goal is minimized. From (19), the
criterion remains linear in the control inputs.

The robust probabilistic path planning problem with ob-
stacles can therefore be expressed as a Disjunctive Linear
Program, and solved efficiently using existing methods [11].
The additional computational complexity required to handle
uncertainty compared to the original, deterministic path
planning problem, is small, consisting only of a single look-
up table evaluation per constraint of the original problem.

V. EXPERIMENTAL RESULTS

The new method for path planning with obstacles was
implemented and tested using an aircraft path planning
scenario, where minimum-fuel robust trajectories were to
be designed over a fixed planning horizon. Results were
obtained for several different obstacle maps. This section
shows the key results from these tests.

First we show trajectories generated by the new method,
and show how these vary as the specified maximum proba-
bility of collision, A, is varied. We compare these trajectories
to one generated without taking into account uncertainty.
Second, we compare the true probability of collision for the
trajectories generated by the new method, to the specified
maximum probability of collision, A. We demonstrate the
robustness of trajectories designed using the new method
compared to the optimal path that does not take into account
uncertainty. The results show that the method has a relatively
high level of conservatism. We show how this conservatism
varies with the number of obstacles in the map. The reasons
for this are discussed.

The aircraft was modeled as a point mass subject to
minimum and maximum velocity constraints, as well as max-
imum acceleration constraints [3][7][10]. The disturbance
acceleration had an expected absolute value of 0.01m/s? in
both the = and y directions. For comparison, the maximum
commandable acceleration magnitude for the aircraft was
0.5m/s?. The variance of the initial state was 0.03m? in both
the 2 and y directions. The modeling error was described
by additive zero mean white noise processes on the vehicle
velocity in both the = and y directions, which had a standard
deviation of 0.01m/s.

A. Trajectories Generated by Probabilistic Method

Fig. 5 shows the trajectories planned by the new proba-
bilistic method for three different values of the maximum
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Fig. 5. Trajectories planned by new probabilistic method. The circle is
the mean of the start distribution, while the star is the goal position. The
different trajectories represent different maximum probabilities of collision
A. For A < 0.0001, the planned path is no longer between the obstacles,
but instead goes around the large obstacle. This solution requires more
fuel, but has a lower probability of collision. The fuel-optimal path planned
without taking into account uncertainty is shown for comparison.

probability of collision A for a typical obstacle map. As
the probability of collision decreases, the planned trajectory
moves further away from the obstacles. For a probability
of collision less than 0.0001, the planned trajectory can no
longer go between the obstacles, but instead must go around
the largest obstacle.

Fig. 6 shows how the fuel use varies with the maximum
collision probability A. Decreasing A increases the level
of conservatism in the plan, which causes the fuel use to
increase. This demonstrates how conservatism can be traded
off against fuel use.

B. Analysis of True Failure Probability

By carrying out a large number of simulations using
the planned trajectories, an approximate value for the true
probability of collision for each time step in a scenario was
calculated. Fig. 7 shows the probability of collision for all
of the time steps in a typical plan, where A = 0.1. The
probability of collision is below the maximum level A, as
required.

In Fig. 7 the probability of collision is higher for some
time steps than others. This is because the chance constraints
are not active at all time steps. In order to assess the level of
conservatism in the plan, we compare the highest probability
of collision, where the chance constraints are tight, to the
specified probability A. The method is conservative, since
the highest probability of collision p,,.... is significantly
below the maximum level A. We define the conservatism
factor as w. A factor of zero indicates no conservatism.
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Fig. 6. Fuel use as a function of maximum collision probability A, for
the map shown in Fig. 5. The fuel use decreases as A increases, since the
level of conservatism decreases.
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Fig. 7.  Estimated true probability of collision for each time step in a
typical plan where A = 0.1. The highest probability of collision is still
significantly lower than A, indicating significant conservatism in the plan.

Fig. 8 shows how the conservatism factor varies with the
number of obstacles in the map. With only one obstacle, the
conservatism factor is close to zero, while the factor increases
approximately linearly with the number of obstacles. It is
clear therefore, that the majority of the conservatism in the
problem arises from the bounding used in (16). Ongoing
work aims to reduce this conservatism using an iterative
approach.

For the sake of comparison, the optimal trajectory for
the map shown in Fig. 5 was generated without taking into
account uncertainty. While the fuel use for this trajectory
is only 48.6, compared to the values shown in Fig. 6 that
range between 65 and 110, the probability of collision for
a given time step was as high as 0.4. Hence the new
probabilistic method can lead to significant robustness gains.
These robustness gains are achieved with only a marginal
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Fig. 8.  Conservatism factor as a function of the number of obstacles,
averaged over several different arrangements of obstacles. The error bars
represent two standard deviation intervals. For one obstacle, the factor is
close to zero, but increases approximately linearly with the number of
obstacles in the map.

increase in computational complexity.

V1. CONCLUSION

This paper presents a new, probabilistic approach to
optimal, robust path planning with obstacles. We specify
a maximum probability that the vehicle collides with any
obstacle. We show how this problem can be posed conser-
vatively as a Disjunctive Linear Program, and can therefore
use existing constrained optimization methods to generate
a finite sequence of optimal control inputs. The resulting
optimization problem has the same complexity as the path
planning problem that does not take into account uncertainty.

Experimental results showed how the planned path
changes with the level of conservatism, specified using the
probability of collision. The results showed that the method is
conservative, and that the main source of conservatism is due
to the bound necessary to accommodate several obstacles.
While conservatism is undesirable, the computational sim-
plicity of the approach is highly attractive. Future work will
use an iterative approach to reduce the level of conservatism.

While the method presented here was demonstrated in the
case of a fixed planning horizon, it can equally be used
within a receding horizon framework. Uncertainty about the
future state of the vehicle always grows as the distribution is
predicted further into the future. This means that the planned
path of the mean is further away from obstacles later in the
path. In a receding horizon framework, an estimation scheme

determines the distribution of the vehicle state on-line,
given the most recent observations. As new observations are
made, uncertainty about the vehicle state typically dimin-
ishes. Hence the path can be planned with less conservatism,
than that planned without closing the estimation loop.
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