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Abstract— In this paper we consider a class of optimal control
problems that have continuous-time nonlinear dynamics and
nonconvex control constraints. We propose a convex relaxation
of the nonconvex control constraints, and prove that the optimal
solution to the relaxed problem is the globally optimal solution
to the original problem with nonconvex control constraints.
This lossless convexification enables a computationally simpler
problem to be solved instead of the original problem. We
demonstrate the approach in simulation with a planetary soft
landing problem involving a nonlinear gravity field.

I. I NTRODUCTION

In this paper we consider a class of finite time horizon op-
timal control problems that have continuous-time nonlinear
dynamics and nonconvex control constraints. A large number
of practical problems fall into this category. One example is
the planetary landing problem[13], [12], also known as the
soft landing problem in the optimal control literature[9].In
planetary landing, an autonomous spacecraft lands on the
surface of a planet by using thrusters, which can produce
a finite magnitude force vector with an upper and nonzero
lower bound on the magnitude. In this case, the resulting set
of feasible controls is nonconvex. Another example is that of
path planning for an unmanned aerial vehicle (UAV) subject
to upper and lower bounds on the norm of the commanded
velocity[15]. As with the soft landing problem, the minimum
norm constraint makes the set of feasible controls nonconvex.

Prior work proposed the idea of relaxing the nonconvex
control constraints to a convex set in such a way that the
optimal solution to the relaxed problem is guaranteed to be
the optimal solution to the original problem[2]. We refer
to this as a lossless convexification, since no part of the
feasible space of the original problem is removed in the
process of rendering the constraints convex. In [2], [5] the
authors perform a lossless convexification for the special
case of a planetary landing problem in a constant gravity
field, where the changing mass of the spacecraft renders the
system dynamics nonlinear. In [1] this result is generalized to
optimal control problems with linear system dynamics and a
class of non-convex control constraints. In the present paper
we establish an extension of this result to a class of optimal
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control problems with nonlinear system dynamics and non-
convex control constraints. This class includes the planetary
landing problem with nonlinear, nonconstant gravity fields
and aerodynamic forces. The extension to nonconstant grav-
ity fields is significant, since it extends the applicabilityof
convexification from landing on large planets, where gravity
may be assumed constant, to small bodies such as moons,
comets and asteroids. General nonlinear dynamics prevent
the finite-parameter optimization problem that results from
the convexification from being convex; however by approxi-
mating the nonlinear dynamics as being piecewise linear, the
globally optimal solution can be found in finite time using
Mixed Integer Linear Programming (MILP)[10]. This is in
contrast to shooting or pseudospectral methods[8], [18], [16],
which can only guaranteelocal optimality. By removing the
nonconvex control constraints, the convexification introduced
in this paper significantly reduces the number of disjunctions
in the MILP encoding, and hence the problem complexity.

The organization of the paper is as follows. In Section II
we provide the main theoretical result, in Section III we
show how the result applies to two practical examples, and
in Section IV we provide simulation results.

II. L OSSLESSCONVEXIFICATION

In this section we provide our main analytic result, namely
lossless convexification for a class of nonlinear optimal
control problems with nonconvex control constraints. We
provide a convex relaxation of the nonconvex control con-
straints, along with guarantees that the optimal solution to the
problem with the convex control constraints is the optimal
solution to the problem with nonconvex control constraints.

In this paper we consider the nonlinear dynamic system:

ẋ = f
(

t,x,u, gc(u)
)

, (1)

wherex ∈ ℜnx , the functionf is continuously differentiable,
and gc : ℜnu → ℜ1 is a measure of the control effort. We
useu ∈ ℜnu to denote the control inputs. We use||v|| to
denote the 2-norm of vectorv. We usev = 0 to mean that
all elements ofv are zero, and usev 6= 0 to mean that
at least one element ofv is nonzero. A vector of all zeros
except unity in thei’th element is denotedei. We use a.e.
to mean ‘almost everywhere’, i.e. everywhere except on a
set of measure zero. We define the Jacobian of an arbitrary



functionh(v) : ℜnv → ℜnh as follows:
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wherehi denotes thei’th element ofh and vi denotes the
i’th element ofv.

In this paper we are concerned with the optimal control
problem:

Problem 1 (With non-convex control constraints):

min
u,tf

J =

∫ tf

0

l
(

t, gc(u(t))
)

dt subject to: (2)

ẋ(t) = f(t,x(t),u(t), gc(u(t))) a.e. on[0, tf ] (3)

0 < ρ1 ≤ gc(u(t)) ≤ ρ2 a.e. on[0, tf ] (4)

x(0) = x0, x(tf ) ∈ F . (5)
We propose the followingconvex relaxation of the control
constraints in Problem 1, which is inspired by the convexi-
fication introduced in [2], [5], [1]:

Problem 2 (With relaxed control constraints):

min
u,tf ,Γ

J =

∫ tf

0

l
(

t, Γ(t)
)

dt subject to: (6)

ẋ(t) = f(t,x(t),u(t), Γ(t)) a.e. on[0, tf ] (7)

0 < ρ1 ≤ Γ(t) ≤ ρ2 a.e. on[0, tf ] (8)

gc(u(t)) ≤ Γ(t) a.e. on[0, tf ] (9)

x(0) = x0, x(tf ) ∈ F , (10)

whereΓ(t) ∈ ℜ1 is a slack variable.
The following lemma establishes conditions under which the
optimal value ofu is on the boundary of the feasible set.

Lemma 1: Let:

H = λ0l(t, Γ) + λT f(t,x,u, Γ).

Let:

{u†, Γ†} , argmax
u,Γ

H

subject to gc(u) ≤ Γ, 0 < ρ1 ≤ Γ ≤ ρ2.

Then if f(t,x,u, Γ) is differentiable inu and (∇uf)λ 6= 0
at u†:

gc(u
†) = Γ†.

Proof: The pair{u†, Γ†} must satisfy:

u† = arg max
u

λT f(t,x,u, Γ†) subject to: (11)

gc(u) ≤ Γ†. (12)

If at u†, ∂H/∂u = (∇uf)λ 6= 0 then gradient of the cost
function (11) is nonzero atu†. Hence the optimal solution to
(11) is on the boundary of the feasible set, andgc(u

†) = Γ†.

Condition 1: The pair [−(∇xf), (∇uf)] is totally
observable[7] on [0, tf ] for all sequences ofx and

u satisfying (7) through (10), meaning that for every
subinterval [t1, t2] ⊆ [0, t∗f ] the initial stateλ(t1) of the
following system can be determined uniquely from the
outputy(t) for t ∈ [t1, t2]:

λ̇ = −(∇xf)λ

y = (∇uf)λ. (13)
The following theorem provides the lossless convexification
that is the main result of this paper.

Theorem 1: Let {u∗,x∗, t∗f , Γ∗} be the optimal solution
to Problem 2. If Condition 1 is satisfied, the function
l(t, Γ) 6= 0 ∀Γ ∈ [ρ1, ρ2], ∀t, then {u∗,x∗, t∗f} is the
optimal solution to Problem 1.

Proof: The Hamiltonian for Problem 2 is:

H = λ0l(t, Γ) + λT f(t,x,u, Γ), (14)

and the costate dynamics are given by:
[

λ̇0

λ̇

]

= −
∂H

∂x
=

[

0
−(∇xf)λ

]

, (15)

where λ0 is constant andλ is absolutely continuous with
[λ0, λ

T ] 6= 0 ∀t from [3]. Definey = (∇uf)λ. We now show
that y(t) = 0 for a finite interval is not possible. The proof
is by contradiction. Assume that there existst1 < t2 such
that y(t) = 0 ∀t ∈ [t1, t2]. From Condition 1 the system
(13) is totally observable on the interval[0, t∗f ], meaning that
for every subinterval[t1, t2] ⊆ [0, t∗f ] the initial stateλ(t1)
can be determined uniquely from the outputy(t) for t ∈
[t1, t2]. This means thatλ(t1) = 0, and from the costate
dynamicsλ(t) = 0 ∀t ∈ [t1, t

∗
f ]. Sincetf is unconstrained,

the transversality condition[3] means thatH(t∗f ) = 0, and
sincel(t, Γ) 6= 0 ∀t, ∀Γ ∈ [ρ1, ρ2] this means thatλ0 = 0,
hence[λ0, λT ] = 0 ∀t ∈ [t1, t

∗
f ], which contradicts the

requirement that[λ0, λT ]T 6= 0 ∀t ∈ [0, t∗f ]. Hencey(t) 6=
0 a.e ont ∈ [0, t∗f ].

The pointwise maximum principle implies that, in the
optimal solution, the Hamiltonian is maximized over{u, Γ}
almost everywhere ont ∈ [0, t∗f ]. For any value ofΓ, since
(∇uf)λ 6= 0 a.e. on t ∈ [0, t∗f ], Lemma 1 means that
gc(u

∗) = Γ a.e. ont ∈ [0, t∗f ]. Hence the cost functions (2)
and (6) for the nonconvex problem and the relaxed problem
are identical, and the nonconvex control constraint (4) is
satisfied byu∗. Furthemore the relaxed solution satisfies the
original dynamics (3). This implies that the optimal cost of
Problem 2 is greater than or equal to the optimal cost of
Problem 1. Since Problem 2 is a relaxation of Problem 1,
the optimal cost of Problem 2 is less than or equal to the
optimal cost of Problem 1. Hence the costs are equal, which
completes the proof.
Theorem 1 shows that we can solve a relaxation (Problem 2)
of the nonconvex optimal control problem (Problem 1) with
a guarantee that the optimal solution to the relaxation will
be the globally optimal solution to the original problem.
We have hence established a lossless convexification of
Problem 1.

Condition 1 can be established using the following result
from [7]:



Lemma 2: The system (13) is totally observable on the
interval [0, tf ] if and only if the following observability
matrix has ranknx almost everywhere on[0, tf ]:

Q(t) , [(∇uf)
T , ∆0(∇uf)T , . . . , ∆n−1

0 (∇uf)T ]T , (16)

where:

∆0 ≡ (∇xf)
T +

d

dt
, (17)

and (∇xf) and (∇uf) are nx − 2 and nx − 1 times
differentiable, respectively.
The rank of the matrixQ(t) may be difficult to verify, in
general, because of the need to compute the time-derivatives
in (17). For a large class of problems related to vehicle path
planning, we can show that Condition 1 is satisfied without
the need for explicit computation of the derivatives. In such
problems the state can be partitioned into two parts; the first
is acted upon directly by the control effort, the second is
not. An example is where the control effort acts to change
the vehicle velocity, and the vehicle’s position is simply the
integral of velocity. The following corollary shows that for
such systems, the convexification holds:

Corollary 1: Let {u∗,x∗, t∗f , Γ∗} be the solution to Prob-
lem 2 wheref(·) has the form:

x =

[

x1

x2

]

f(t,x,u) =

[

f1(t,x,u)
f2(t,x)

]

. (18)

If Null (∇uf1) = 0, Null(∇x1
f2) = 0, the functionl(t, Γ) 6=

0 ∀Γ ∈ [ρ1, ρ2], ∀t, then{u∗,x∗, t∗f} is the optimal solution
to Problem 1.

Proof: For this system:

(∇uf) =
[

(∇uf1) 0
]

(∇xf) =

[

(∇x1
f1) (∇x1

f2)
(∇x2

f1) (∇x2
f2)

]

(19)

Define:

M(t) , [(∇uf)
T , ∆0(∇uf)T ]T , (20)

then:

M(t) =

[

(∇uf1) 0
d(∇uf1)

dt
− (∇uf1)(∇x1

f1) − (∇uf1)(∇x1
f2)

]

(21)

We now show thatM(t) has ranknx. It suffices to show
that M(t)λ = 0 implies λ = 0. Let λ = (λ1, λ2), then
Null(∇uf1) = 0 impliesλ1 = 0, hence(∇uf1)(∇x1

f2)λ2 =
0. Since Null(∇x1

f2) = 0, this impliesλ2 = 0 and hence
λ = 0, and Null(M(t))=0. Hence, for the system (18),Q(t)
is rank nx and the conditions of Theorem 1 are satisfied,
from which the proof follows.
One limitation of Corollary 1 is that it requires2nu ≥ nx.
For many vehicle path planning problems,2nu = nx since
the state consists of the vehicle position and velocity, and
the control acts on all elements of the vehicle velocity. We
can extend Corollary 1 to the case of2nu < nx for systems
where there is additional structure inf(·) andF .

Condition 2: There exists a constant invertible matrixT ∈
ℜ(nx×nx) such that:

T−1(∇xf)T =
[

E
(

t,x,u, gc(u)
)

0
]

, (22)

whereE(·) ∈ ℜnx×na andna < nx.
Theorem 2: Assume that Condition 2 holds and thatF

is defined as a plane such thatF , {x : x = Lv + ax},
whereL ∈ ℜnx×nv . Let {u∗,x∗, t∗f , Γ∗} be the solution to
Problem 2. Assumel(t, Γ) 6= 0 ∀Γ ∈ [ρ1, ρ2], ∀t. Define:

M̃(t) ,

[

M(t)
LT

]

T−1, (23)

where M(t) is as defined in (20). Then ifM̃(t) can be
written:

M̃(t) =

[

A B
C D

]

B = 0, Null(A) = 0, Null(D) = 0,

(24)

whereA ∈ ℜna×na , then{u∗,x∗, t∗f} is the optimal solution
to Problem 1.

Proof: As in Theorem 1 we show thaty(t) = 0 for a
finite interval is not possible. Assume that there existst1 < t2
such thaty(t) = 0 ∀t ∈ [t1, t2]. This implies thatẏ(t) =
0 ∀t ∈ [t1, t2]. Defineα = Tλ = (α1, α2) whereα1 ∈ ℜna

and α2 ∈ ℜnx−na . Then M(t)T−1α(t) = 0 ∀t ∈ [t1, t2].
From the form ofM̃ this meansAα1(t) = 0 ∀t ∈ [t1, t2]
henceα1(t) = 0 ∀t ∈ [t1, t2]. From the costate dynamics:

α̇(t) = −T−1(∇xf)Tα(t), (25)

and sincef(·) satisfies Condition 2, we know thatα̇(t) =
0 ∀t ∈ [t1, t

∗
f ], henceα(t) = α(t∗f ) ∀t ∈ [t1, t

∗
f ]. The

transversality condition[3] implies thatLT T−1α(t∗f ) = 0,
henceLT T−1α(t) = 0 ∀t ∈ [t1, t

∗
f ]. Sinceα1(t) = 0 ∀t ∈

[t1, t
∗
f ], then Dα2(t) = 0 ∀t ∈ [t1, t

∗
f ], which implies

α2(t) = 0 ∀t ∈ [t1, t
∗
f ]. Henceλ(t) = 0 ∀t ∈ [t1, t

∗
f ], which

is a contradiction, and the proof proceeds as in Theorem 1.

Theorem 2 applies to vehicle-type problems where the
dynamics of the states that are additional to velocity and
position depend only on the control effort, and time, as we
show in Corollary 2. An important practical example is the
case where the vehicle has variable mass, and the rate of mass
depletion depends only on the norm of the applied control
effort, as we show in Section III.

Corollary 2: Let f(·) have the form:

x =

[

x3

x4

]

f(t,x,u) =

[

f3(t,x,u)
f4(t, gc(u))

]

, (26)

wherex3 ∈ ℜx3 ,x4 ∈ ℜx4 , and letL be defined such that
LT = [LT

1 LT
2 ] whereL2 ∈ ℜnx4

×nx4 . Define:

M3 ,

[

(∇uf3)
d(∇uf3)

dt
− (∇uf3)(∇xf3)

]

. (27)

If Null (M3) = 0, Null(L2) = 0, and l(t, Γ) 6= 0 ∀Γ ∈
[ρ1, ρ2], ∀t then the conclusions of Theorem 2 hold.



Proof: ChooseT = I, then from the structure off(·)
we have:

M̃ =

[

M3 0
LT

1 LT
2

]

, (28)

where Null(M3) = 0 and Null(LT
2 ) = 0. Hence the

conditions of Theorem 2 are satisfied.
All of the convexification results presented in this paper

rely on having an integral cost in Problem 1. The results,
however, can be extended to the case of terminal cost using
the two-step prioritized optimization strategy proposed in [5],
[1]. First we solve a problem with relaxed control constraints
and terminal cost, to determine the optimal terminal state.
Then we solve a problem with a suitably-chosen integral
cost with the terminal state constrained to be the optimal
terminal state. From the convexification results presentedin
this paper, the second step ensures that the nonconvex control
constraints are satisfied.

III. PRACTICAL EXAMPLES

In this section we use Theorem 1 to generate lossless con-
vexifications for two practical examples, namely minimum-
fuel soft landing with a general nonlinear gravity field and
nonlinear aerodynamic drag, and path planning for a UAV
with minimum and maximum velocity constraints. Both are
problems of significant practical interest [12], [17], [2],[5],
[15].

A. Minimum-fuel Landing with Nonlinear Gravity

The problem of minimum-fuel soft landing is stated as:
Problem 3 (Nonlinear-gravity soft landing):

min
τ,tf

J =

∫ tf

0

||τ(t)||dt subject to: (29)

r̈(t) = g(r(t)) − CD(r(t))‖ṙ(t)‖ṙ(t) +
τ(t)

m(t)
(30)

ṁ(t) = −β‖τ(t)‖

0 < ρ1 ≤ ||τ(t)|| ≤ ρ2 (31)

r(0) = r0, ṙ(0) = ṙ0,

r(tf ) = tp, ṙ(tf ) = tv,

wherer ∈ ℜnr denotes position,τ ∈ ℜnr denotes thrust1,
m ∈ ℜ denotes mass, andtp ∈ ℜnr andtv ∈ ℜnr denote the
position and velocity targets, respectively.CD is a constant
related to the drag coefficient of the spacecraft and the
atmospheric density,β relates to the specific impulse of the
thrusters, andg(·) is the (possibly nonlinear) acceleration
due to gravity. Therefore, lettingx , (ṙ, r, m) andu , τ ,

1Note that thrust here is not a true force, but an effective force, which
is proportional to the rate at which mass is expelled by the thrusters. We
refer the reader to standard texts on the rocket equation, such as [6].

we can express this problem as Problem 1 with:

l(t, v) = v, gc(u) = ‖u‖,x0 = (ṙ0, r0, m) (32)

F = {x : r = tp, ṙ = tv} (33)

f(t,x,u) =





f5(t,x,u)
f6(t,x)

f7(t, gc(u(t))



 =





g(r) − CD‖ṙ‖ṙ + τ/m
ṙ

−β||τ ||



 .

(34)

The functionf(·) falls into the form of Corollary 2, with
f4 = f7 and f3 = (f5, f6). We have:

(∇uf5) = I (∇ṙf6) = I, (35)

hence from Corollary 1 we know Null(M3) = 0. Now,
l(t, Γ) 6= 0 ∀Γ ∈ [ρ1, ρ2], ∀t. Since the final state is all
constrained except form(tf ), we can writeF = {x|x =
Lv + ax} with v ∈ ℜ and L1 = 06×1 and L2 = 1. Hence
the conditions of Corollary 2 are satisfied and we can obtain
the optimal solution of this problem by solving its relaxed
version given by Problem 2.

The special case of constant gravity and no aerodynamic
drag, whereg(r(t)) , g and CD = 0, was handled by
[2], which is now generalized to the nonlinear gravity case
with aerodynamic drag by Theorem 2. In Section IV we give
simulation results for the general nonlinear gravity case.For
extensive results on the special case of constant gravity, we
refer the reader to [2].

B. Velocity-controlled Aircraft

In this section we consider the problem of controlling
an aircraft subject to maximum and minimum velocity con-
straints, and subject to aerodynamic drag proportional to the
square of velocity. The aircraft is modeled as having an inner-
loop proportional controller that regulates the velocity to a
desired reference value[15].

Problem 4 (UAV with velocity constraints):

min
vd,tf

J =

∫ tf

0

l
(

||vd(t)||
)

dt subject to: (36)

r̈(t) = κ
(

vd(t) − ṙ(t)
)

− CD ṙ(t)‖ṙ(t)‖

0 < ρ1 ≤ ||vd(t)|| ≤ ρ2

r(0) = r0 ṙ(0) = ṙ0

r(tf ) = rf ṙ(tf ) = ṙf ,
wherer denotes position,vd denotes reference velocity,κ
denotes the gain of the inner-loop controller,rf denotes
desired final position anḋrf denotes desired final velocity.
The functionl(·) is a cost function that may be nonlinear
and nonconvex, as long asl(v) 6= 0 for ρ1 ≤ v ≤ ρ2.
This problem can be written as Problem 1 withx = (ṙ, r),
u = vd, and:

f(t,x,u) =

[

f1(t,x,u)
f2(t,x)

]

=

[

−κṙ− CD ṙ‖ṙ‖ + κvd

ṙ

]

gc(u) = ‖vd‖ x0 = (r0, ṙ0),

F = {x : x1 = ṙf ,x2 = rf}.



Now we can apply Corollary 1 and solve Problem 2 to obtain
optimal solutions of this problem.

IV. SIMULATION RESULTS

Here we present simulation results for a two-dimensional
soft landing problem with nonlinear gravity, as defined in
Problem 3 withr ∈ ℜ2. Figure 3 shows the piecewise linear
gravity model used in this section. For this example we
set α = CD = 0. Figures 4 and 5 show the solution to
the relaxed version of Problem 3 given by Problem 2 with
the problem parameters are given as in (32) through (34).
Here the nonlinear gravitational fieldg(r) is approximated
by a piecewise gravitational accelerationĝ(r), which is as
follows:

ĝ(r) , Air + bi ∀r ∈ Pi, (37)

wherePi is a convex polytope defined by:

Pi , {r|Pir ≤ pi}. (38)

The feasible space of positions is partitioned intonz poly-
topes. In the numerical example in this section we assume
thatg(r) depends only on altitude, and partition the altitude
into intervals. We then defineAi andbi so that the piecewise
linear section for intervalPi is tangent to ĝ(r) at the
midpoint of Pi. An example is given in Figure 3. The 2-
norm constraint‖τ(t)‖ ≤ Γ(t) is approximated by using a
32-sided polygon at each discretization time instance, which
is shown in Figure 1, as follows:

aT
j τk ≤ Γk j = 1, . . . , np, (39)

wherenp is the number of facets used to approximate the 2-
norm constraint, andai is a vector normal to the facet, scaled
so that the polytope defined by (39) is an inner approximation
of the hypersphere defined by‖τ(t)‖ ≤ Γ(t). An example
of such an approximation is given in Figures 1 and 2.

Given the above approximations of gravity and control
constraints, and the fact that the cost is linear in the slack
variableΓ, the relaxed optimal control problem, Problem 2
with (32), can be discretized to obtain a Mixed Integer Linear
Program[10] for each final timetf . Details are given in the
Appendix. We useN = 15 discretization time steps2. The
resulting MILP can then be solved to global optimality using
highly optimized commercial solvers[11]. Sincetf is a scalar
solution variable, we can find the global optimum solution
of the problem by performing a line search ontf , solving a
MILP at each cost computation during the line search. We
use the Golden Search method [4] to do so.

The simulation results in Figure 5 show that the nonconvex
control magnitude constraints are satisfied as predicted by
Theorem 1. For this example we usedρ1 = 2m/s2, ρ2 =
10m/s2, r0 = [2, 8]× 104m, ṙ0 = tp = tv = 0. The optimal
solution hadt∗f = 490s.

2Our empirical experience has shown that increasing the number of
discretization steps above N=15 has only a very minor impacton the
resulting solution.
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Fig. 5. Optimal profiles for nonlinear soft landing problem.Note the
nonconstant, nonlinear acceleration due to gravity. The nonconvex control
acceleration constraints are satisfied, as predicted by Theorem 1.

V. D ISCUSSION

In this section we make some remarks on two alternative
approaches to handling the nonconvex control constraints in
Problem 1. The first approach is to approximate the noncon-
vex constraintρ1 ≤ gc(u(t)) as a polytopic stay-out region,
and use binary variables to encode the resulting problem
as a MILP. This was proposed by [14] for a UAV path-
planning problem. Although our convexification approach
also results in a MILP, the number of binary variables is
significantly reduced by removing the nonconvexity in the
control constraints. Since a MILP is worst-case exponential
in the number of binary variables, this yields a large im-
provement in the problem complexity.

The second approach is to perform a change of variables
to render the control constraints convex. For lower and upper
bounds on the 2-norm, as in our practical examples, this can
be achieved by a conversion to polar coordinates. The major
disadvantage of this approach, however, is that it simply
shifts the nonconvexity from the control constraints to the
dynamics. In the case of polar coordinates, this leads to
trigonometric functions in the dynamics. For many problems,
in cartesian coordinates, the system dynamics are linear with
some structured nonlinearity, which can be approximated as
being piecewise linear without an explosion in the number
of binary variables in the resulting MILP. A conversion
to polar coordinates requires everynx-dimensional equality
constraint in the dynamics to be modeled as being piecewise
linear. This will typically lead to many more binary variables
than the convexification approach proposed in this paper.

VI. CONCLUSION

This paper provided a lossless convexification of a class of
optimal control problems that have continuous-time nonlin-
ear dynamics and nonconvex control constraints. We prove
that the optimal solution to the relaxed problem is the
globally optimal solution to the original nonconvex problem.
We demonstrated the approach in simulation with a planetary
soft landing problem.

APPENDIX

In this section we describe a method for approximating the
relaxation of the infinite-dimensional soft landing problem
(Problem 3) as a finite-dimensional optimization problem
that can be solved to global optimality using Mixed Integer
Linear Programming (MILP). We introduce the following
approximations:

1) In order to reduce the infinite-dimensional to a finite-
dimensional one, we perform a standard discretization
in time assuming a zero-order hold (ZOH) on the
control inputsu.

2) We approximate the smooth nonlinear functiong(r(t))
as a piecewise linear function, as in (37) through (38).

3) We approximate the norm bounds using convex poly-
topic constraints as in (39).

We then show that, for fixed∆t, the resulting problem is a
MILP. This means that, by performing a line search over∆t,
as proposed in [2], we can find the globally optimal solution.



For simplicity of exposition, we assume that mass is
constant, even though this nonlinearity could be handled
through piecewise linearization in a similar manner to the
gravity. An alternative method for dealing with time-varying
mass, which moves the nonlinearity from the dynamics into
the constraints, was previously proposed by [2].

A. Time discretization

To perform the time-discretization we define a fixed num-
ber of time stepsN , and a time step∆t such thattf = N∆t.
Define a discrete-time set of variables that approximate the
continuous time variables:rk , r(k∆t), ṙk , ṙ(k∆t). We
restrict the class of control input sequencesτ(t) andΓ(t) to
be of a zero-order hold type, such that:

τ(t) = τk ∀t ∈ [k∆t, (k + 1)∆t)

Γ(t) = Γk ∀t ∈ [k∆t, (k + 1)∆t). (40)

By approximating the gravity valueg(r(t)) as constant for
all t ∈ [k∆t, (k+1)∆t], the dynamics of the spacecraft (30)
can be written in discrete-time as:

rk+1 = rk + ṙk∆t +
1

2
∆t2

( τk

mwet

+ g(rk)
)

ṙk+1 = ṙ + ∆t
( τk

mwet

+ g(rk)
)

. (41)

Note that these dynamics are still nonlinear due to the
nonlinear dependence ofg(rk) on rk. The cost function is:

J = ∆t

N−1
∑

i=0

Γk. (42)

B. MILP formulation

The relaxation of Problem 3 can now be approximated as
follows:

Problem 5 (MILP approximation of landing problem):

min
∆t,τi,Γi,zik

J = ∆t

N−1
∑

i=0

Γi (43)

subject to, for alli = 1, . . . , nz, k = 1, . . . , N − 1:

Pirk ≤ pi + Mzik (44)

rk+1 ≤ rk + ṙk∆t +
1

2
∆t2

( τk

mwet

+ Airk + bi

)

+ Mzik

rk+1 ≥ rk + ṙk∆t +
1

2
∆t2

( τk

mwet

+ Airk + bi

)

− Mzik

(45)

ṙk+1 ≤ ṙ + ∆t
( τk

mwet

+ Airk + bi

)

+ Mzik

ṙk+1 ≤ ṙ + ∆t
( τk

mwet

+ Airk + bi

)

− Mzik (46)

zik ∈ {0, 1}, (47)

whereM is a large positive integer, subject to:
nz
∑

i=1

zik ≤ nz − 1 k = 1, . . . , N − 1 (48)

aT
j τk ≤ Γk j = 1, . . . , np, k = 1, . . . , N − 1 (49)

0 < ρ1 ≤ Γk ≤ ρ2 k = 1, . . . , N − 1. (50)

and subject torN = rf , ṙN = ṙf .
In Problem 5, the binary variableszik are used to indicate

which polytopePi the positionrk lies in. The constraint
(48) ensures that at least one of thezik is zero at each time
step. For whicheverPi haszik = 0, the constraints (45) and
(46) use ‘big-M’ formulation[15] to ensure that the dynamic
equality constraints are satisfied, while (44) ensures thatrk

lies inPi. For fixed∆t, since all of the constraints are linear,
the cost function is linear, and we have integer variables,
Problem 5 is a Mixed Integer Linear Program. This means
it can be solved to global optimality using highly optimized
commercial solvers[11]. Since∆t is a scalar, we can find the
global optimum to Problem 5 by performing a line search
on ∆t, solving a MILP at each iteration. We use the Golden
Search method[4] to do so.

In summary, the relaxed soft landing problem with non-
linear gravity can be approximated using the approach de-
scribed in this section, and solved to global optimality using
existing techniques.
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