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Abstract— In this paper we consider a class of optimal control  control problems with nonlinear system dynamics and non-
problems that have continuous-time nonlinear dynamics and convex control constraints. This class includes the payet
nonconvex control constraints. We propose a convex relaxain landing problem with nonlinear, nonconstant gravity fields

of the nonconvex control constraints, and prove that the opmal d d ic f Th tension t tant
solution to the relaxed problem is the globally optimal soltion and aerodynamic forces. 1he extension to nonconstant grav-

to the original problem with nonconvex control constraints ity fields is significant, since it extends the applicabildfy
This lossless convexification enables a computationallynspler  convexification from landing on large planets, where gsavit

problem to be solved instead of the original problem. We may be assumed constant, to small bodies such as moons,
I‘;enrgi?]nStrra;&g:T? .applro.ach in 5|r|nulat|on W!Eh ? F(;anetary Sof  comets and asteroids. General nonlinear dynamics prevent
gp Involving a nonfinear gravity field. the finite-parameter optimization problem that resultsrfro
the convexification from being convex; however by approxi-
mating the nonlinear dynamics as being piecewise linear, th
In this paper we consider a class of finite time horizon opglobally optimal solution can be found in finite time using
timal control problems that have continuous-time nonlineaMlixed Integer Linear Programming (MILP)[10]. This is in
dynamics and nonconvex control constraints. A large numbepntrast to shooting or pseudospectral methods|[8], [18], [
of practical problems fall into this category. One examgle iwhich can only guarantdecal optimality. By removing the
the planetary landing problem[13], [12], also known as th@onconvex control constraints, the convexification introet
soft landing problem in the optimal control literature[®). in this paper significantly reduces the number of disjumstio
planetary landing, an autonomous spacecraft lands on thethe MILP encoding, and hence the problem complexity.
surface of a planet by using thrusters, which can produce The organization of the paper is as follows. In Section II
a finite magnitude force vector with an upper and nonzerge provide the main theoretical result, in Section Il we
lower bound on the magnitude. In this case, the resulting sefiow how the result applies to two practical examples, and
of feasible controls is nonconvex. Another example is tfiat n Section IV we provide simulation results.
path planning for an unmanned aerial vehicle (UAV) subject
to upper and lower bounds on the norm of the commanded
velocity[15]. As with the soft landing problem, the minimum I
norm constraint makes the set of feasible controls nonconve
Prior work proposed the idea of relaxing the nonconvex
control constraints to a convex set in such a way that the In this section we provide our main analytic result, namely
optimal solution to the relaxed problem is guaranteed to Hessless convexification for a class of nonlinear optimal
the optimal solution to the original problem[2]. We refercontrol problems with nonconvex control constraints. We
to this as a lossless convexification, since no part of tharovide a convex relaxation of the nonconvex control con-
feasible space of the original problem is removed in th&traints, along with guarantees that the optimal solutithé
process of rendering the constraints convex. In [2]’ [5] th@roblem with the convex control constraints is the Optlmal
authors perform a lossless convexification for the specigplution to the problem with nonconvex control constraints
case of a planetary landing problem in a constant gravity In this paper we consider the nonlinear dynamic system:
field, where the changing mass of the spacecraft renders the
sys_tem dynamics nonhnear_. In [1] this result is gene_rdllne %= f(t, X, gc(U)), (1)
optimal control problems with linear system dynamics and a
class of non-convex control constraints. In the presenepap
we establish an extension of this result to a class of optimalherex € "=, the functionf is continuously differentiable,
andg. : "« — R' is a measure of the control effort. We
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nautics and Space Administration. Government sponsoestipowledged.
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Exploration Technologied. ar s. bl acknor e@pacex. com at least one element of is nonzero. A vector of all zeros
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functionh(v) : ®"» — R"» as follows: u satisfying (7) through (10), meaning that for every

ohy oh,, subinterval[ti, 5] C [0,¢3] the initial stateA(t1) of the
o o1 following system can be determined uniquely from the
(Vyh) £ : outputy(t) for t € [t1,ta]:
Al :
o Tk A= —(Vxf)A
whereh; denotes the'th element ofh andv; denotes the . y = (Vuf)A. (13)
i'th element ofv. The following theorem provides the lossless convexificatio
In this paper we are concerned with the optimal contrdhat is the main result of this paper.
problem: Theorem 1: Let {u*,x",¢;,I'"} be the optimal solution
Problem 1 (With non-convex control constraints): to Problem 2. If Condition 1 is satisfied, the function

¢ l(t,_l“) #0 VI e [p1,p2], Vt, then {u*,x*,t}} is the
min J = / l(t,gc(u(t)))dt subject to: (2) optimal solution to Problem 1.
0

wty Proof: The Hamiltonian for Problem 2 is:
x(t) = f(t,x(t),u(t), g.(u(t))) a.e.onl0,ty] (3) H = Xol(t,T) + ATf(t,x,u,T), (14)
0<p1 <ge(ut)) <p> ae. onf0,ty] (4)  and the costate dynamics are given by:
x(0) =xo, x(ty) € F. (5) 3 O 0
We propose the followingonvex relaxation of the control [ .0} = = { ] , (15)
constraints in Problem 1, which is inspired by the convexi- A Ox —(Vxf)A
fication introduced in [2], [5], [1]: where )\, is constant and\ is absolutely continuous with
Problem 2 (With relaxed control constraints): [Xo, AT] # 0 ¥t from [3]. Definey = (V,f)\. We now show
ty thaty(¢) = 0 for a finite interval is not possible. The proof
ufftl]if’lrJ :/0 I(t,D(t))dt  subject to: (6) is by contradiction. Assume that there exists< ¢, such

thaty(t) = 0 Vt € [t1,tz]. From Condition 1 the system

x(t) = £(t,x(t), u(?), T(?)) ae. on0,t] () (13)’is totally observable on the interval ¢%], meaning that

0<p1 <I(t) <p2 a.e. onf0,ty] (8)  for every subintervalt, t5] C [0,¢}] the initial stateA(t;)
ge(u(t)) <T(t) a.e. on[0, t¢] (9) can be determined uniquely from the outpuit) for ¢ <

x(0) = xo, x(t) € F, (10) [t1,t2]. This means thaf\(¢;) = 0, and from the costate

. _ dynamicsA(t) = 0 V¢ € [t1,¢}]. Sincet; is unconstrained,
wherel'(t) € R' is a slack variable. the transversality condition[3] means th&ft(t;) = 0, and

The following lemma establishes conditions under which thgincel(¢,T) # 0 Vt, VI € [p1, p2] this means thah, = 0,
optimal value ofu is on the boundary of the feasible set. hence[\g, AT] =0 Vt ¢ [tl,t}], which contradicts the

Lemma 1. Let: requirement thapho, A7]7 # 0 Vit € [0,¢}]. Hencey(t) #
H = Xl(t,T) + A"£(t, x,u.T). Oaeonic (0.7 A |
The pointwise maximum principle implies that, in the
Let: optimal solution, the Hamiltonian is maximized ovar, I'}

almost everywhere on € [0,}]. For any value of’, since
(Vuf)A # 0 ae. ont € [0,#3], Lemma 1 means that
subject to g.(u) <T,0 < p; < T < po. ge(u*) =T a.e. ont € [0, t;:]. Hence the cost functions (2)

. L . _ and (6) for the nonconvex problem and the relaxed problem
The?_ if £(¢,x,u,I') is differentiable inu and (Vuf)A # 0 are identical, and the nonconvex control constraint (4) is
atu': satisfied byu*. Furthemore the relaxed solution satisfies the
ge(u") =TT, original dynamics (3). This implies that the optimal cost of
Problem 2 is greater than or equal to the optimal cost of
Problem 1. Since Problem 2 is a relaxation of Problem 1,
the optimal cost of Problem 2 is less than or equal to the
optimal cost of Problem 1. Hence the costs are equal, which
ul = argmax \Tf(t,x,u,T'T) subjectto:  (11) completes the proof. [ ]

T“ Theorem 1 shows that we can solve a relaxation (Problem 2)
ge(w) < T (12) of the nonconvex optimal control problem (Problem 1) with
If at uf, 9H/0u = (V.f)\ # 0 then gradient of the cost @ guarantee that the optimal solution to the relaxation will

function (11) is nonzero ai’. Hence the optimal solution to be the globally optimal solution to the original problem.
(11) is on the boundary of the feasible set, gnga) = I'.  We have hence established a lossless convexification of

m Problem 1.
Condition 1: The pair [—(Vif),(V.f)] is totally Condition 1 can be established using the following result

observable[7] on[0,t;] for all sequences ofx and from [7]:

{uf, 7T} £ argmax H
u,I’

Proof: The pair{uf, '} must satisfy:



Lemma 2: The system (13) is totally observable on the Condition 2: There exists a constant invertible matfixc
interval [0,¢;] if and only if the following observability ~R("=>"=) such that:
matrix has rankn, almost everywhere of0, ¢]:

T (V)T = [E(t,x,u,g:(u)) 0], (22)
Q) & [(Vub)T, Ag(Vuf) T, .., A1 (VLE)T]T,  (16)

where E(-) € R"=*"« andn, < n,.
where: Theorem 2: Assume that Condition 2 holds and that
is defined as a plane such that2 {x : x = Lv + a,},
where L € R"=>"_ Let {u*,x*,¢%,T*} be the solution to

and (V.f) and (Vuf) are n, — 2 and n, — 1 times Problem 2. Assumé&(t,I") # 0 VI' € [p1, p2], Vt. Define:

differentiable, respectively. ~a [M@)] o

The rank of the matrixQ(¢) may be difficult to verify, in M(t) = [ LT ] T, (23)
general, because of the need to compute the time-derigative ~

in (17). For a large class of problems related to vehicle patvhere M (t) is as defined in (20). Then if/(¢) can be
planning, we can show that Condition 1 is satisfied withoutritten:

Ay = (Vi) (17)

+E’

the need for explicit computation of the derivatives. Intsuc A B
problems the state can be partitioned into two parts; the firs M (t) = [C D} B =0,Null(4) = 0,Null(D) = 0,
is acted upon directly by the control effort, the second is (24)

not. An example is where the control effort acts to change
the vehicle velocity, and the vehicle’s position is simghet whereA € 3"«*"«, then{u*,x*,¢}} is the optimal solution
integral of velocity. The following corollary shows thatrfo to Problem 1.

such systems, the convexification holds: Proof: As in Theorem 1 we show that(t) = 0 for a
Corollary 1: Let {u*,x*,¢%,I'*} be the solution to Prob- finite interval is not possible. Assume that there exists. ¢,
lem 2 wheref(-) has the form: such thaty(t) = 0 Vt € [t1,t2]. This implies thaty (¢t) =
0 Vit € [ty,1o]. Definea = TA = (a1, a2) Wherea; € R

X1 f (taxv u) Ng—n -1 _
X = f(t’x7 u) = £ (1 . (18) and ap € R"="e, ~Then M(t)T Oé(t) =0Vt e [tl,tQ].
X2 2(t, %) From the form of M this meansdas (t) = 0 Vt € [t1,t2]

If Null (Vo f1) = 0, Null(Vy, f2) = 0, the functioni(¢,I") # hencea;(t) = 0 Vt € [t1,t2]. From the costate dynamics:
0 VI € [p1, p2], Vi, then{u*,x*,t}} is the optimal solution

to Problem 1. a(t) = =T (Vxf)Tal(?), (25)

Proof: For this system: and sincef(-) satisfies Condition 2, we know thait(t) =

(Vuf) = [(Vafi) 0] 0Vt € [tl_,t}], heppea(t). = _a(t}) Vt € [t1,t7]. The

¢ ¢ transversality condition[3] implies that” T~ 'a(t}) = 0,

(Vif) = [(gxlfl) (g"lf?)] (19) henceLTT la(t) =0Vt € [t1,t}]. Sincea(t) =0Vt €

(Viof1) (Vo f2) [t1,t3], then Das(t) = 0 Vt € [t1,t7], which implies

Define: as(t) =0Vt € [t1,t}]. HenceA(t) = 0 Vt € [t, 3], which
N - o is a contradiction, and the proof proceeds as in Theorem 1.

M(t) = [(vuf) ) AO(Vuf) ] ) (20) [
then: Theorem 2 applies to vehicle-type problems where the
dynamics of the states that are additional to velocity and
_ u position depend only on the control effort, and time, as we

M(t) = | avaty) (Vuft) 0 ition depend onl h | et dt

= — (Vuf)(Vi, £1) = (Vuf1)(Vx, f2) show in Corollary 2. An important practical example is the

(21)  case where the vehicle has variable mass, and the rate of mass
We now show thatV/(¢) has rankn,. It suffices to show depletion depends .only on the norm of the applied control
that M(t)A = 0 implies A = 0. Let A\ = (A1, \2), then effort, as we show in Section IIl.

Null(Vyuf1) = 0 implies Ay = 0, hence(V,f1)(Vx, f2) A2 = Corollary 2: Let f(-) have the form:
0. Since Nul[Vy, f2) = 0, this impliesA, = 0 and hence X3 £5(t, %, u)
A =0, and Nul{ M (¢))=0. Hence, for the system (18)(t) X = [XJ f£(t,x,u) = {fz;(t,’gc’(u))] . (26)

is rank n, and the conditions of Theorem 1 are satisfied,
from which the proof follows. m Wherexs € %3 x4 € R*4, and letL be defined such that
One limitation of Corollary 1 is that it require®n, > nye. L' = [L1 L3] whereL; € R"=4* =1, Define:

For many vehicle path planning problen?s;,,, = ny since (Vus)

the state consists of the vehicle position and velocity, and Mz & [d(vufB) s ] . (27)
the control acts on all elements of the vehicle velocity. We i~ (Vafs)(Vxfs)

can extend Corollary 1 to the casedf,, < ny for systems |t Null (M/3) = 0, Null(Ly) = 0, and{(t,T) # 0 VI €
where there is additional structure fi¢-) and F. [p1, p2], Vt then the conclusions of Theorem 2 hold.



Proof: ChooseT” = I, then from the structure df(-) we can express this problem as Problem 1 with:

we have: .
I(t,v) = v, g.(u) =|u|l,xo = (fo,r0, M) (32)
= {]\4:,3, OT} ’ (28) F={x:r=t,r=t,} (33)
Ll L2 f5(t,X, u) g(r) —CDHI'HI'—FT/m

f(t,x,u) =
0. Hence the

fg(t, X)
£7(t, ge(u(t))

r
where NullMs) = 0 and Nul(L}) =Bl

conditions of Theorem 2 are satisfied.

All of the convexification results presented in this PapeL . functionf
rely on having an integral cost in Problem 1. The results, _
however, can be extended to the case of terminal cost using
the two-step prioritized optimization strategy proposefbi,

1]. First we solve a problem with relaxed control consttsin
(1] P tfence from Corollary 1 we know NuiM/5) = 0. Now,

and terminal cost, to determine the optimal terminal sta T T vt Si he final is Al
Then we solve a problem with a suitably-chosen integré‘t’ ) 3& 0 € [py, pa), ¥t Since t € fina state Is a
nstrained except fom(ty), we can writeF = {x|x =

cost with the terminal state constrained to be the optim:%O ith % and L. — 0 dlo— 1 H
terminal state. From the convexification results preseirted -V T a;} with v € ® and L, = Ogx1 and L = 1. Hence

this paper, the second step ensures that the nonconvexolcon&lﬁe conditions of Corollary 2 are satisfied and we can obtain
constraint’s are satisfied the optimal solution of this problem by solving its relaxed

version given by Problem 2.

The special case of constant gravity and no aerodynamic
drag, whereg(r(t)) £ g and Cp = 0, was handled by
[2], which is now generalized to the nonlinear gravity case

In this section we use Theorem 1 to generate lossless comith aerodynamic drag by Theorem 2. In Section IV we give
vexifications for two practical examples, namely minimumsimulation results for the general nonlinear gravity c&se.
fuel soft landing with a general nonlinear gravity field andextensive results on the special case of constant graviy, w
nonlinear aerodynamic drag, and path planning for a UAvefer the reader to [2].

(34)

() falls into the form of Corollary 2, with
f; andf; = (f5,f5). We have:

(Vofs) =1 (Vifg) = I, (35)

IIl. PRACTICAL EXAMPLES

with minimum and maximum velocity constraints. Both ar
problems of significant practical interest [12], [17], [23],
[15].

A. Minimum-fuel Landing with Nonlinear Gravity

The problem of minimum-fuel soft landing is stated as:
Problem 3 (Nonlinear-gravity soft landing):

minJ = /tf [|7(t)||dt subject to: (29)
T,tf 0

£(0) = 8(0(0) ~ ColeO) 010+~ @0
(t) = =B 7(t)|

0<pr<|l7@® < p2 (31)
r(0) =ro, 1¥(0) = ro,

r(ty) =tp,  E(ty) = to,

wherer € R" denotes positiont € R" denotes thrust
m € R denotes mass, artg € R~ andt,, € "~ denote the
position and velocity targets, respectivelyp is a constant

related to the drag coefficient of the spacecraft and the

atmospheric densityj relates to the specific impulse of the
thrusters, andz(-) is the (possibly nonlinear) acceleration
due to gravity. Therefore, letting £ (¢,r,m) andu = 7,

INote that thrust here is not a true force, but an effectiveefipwhich
is proportional to the rate at which mass is expelled by tmasters. We
refer the reader to standard texts on the rocket equatiam, asi [6].

eB. Vel ocity-controlled Aircraft

In this section we consider the problem of controlling
an aircraft subject to maximum and minimum velocity con-
straints, and subject to aerodynamic drag proportiondié¢o t
square of velocity. The aircraft is modeled as having anrinne
loop proportional controller that regulates the velocibyat
desired reference value[15].

Problem 4 (UAV with velocity constraints):

min J = /tf [(lIva(t)]|)dt  subjectto:  (36)
Varts o

£(t) = k(va(t) — £(t)) — Cpr(t)[[(t)]
0<p1<|lva(®)l| < p2

r(0)=ry 1(0)=rp

r(ty) =rp  E(ty) =¥y,

wherer denotes positiony, denotes reference velocity,
denotes the gain of the inner-loop controlley, denotes
desired final position and; denotes desired final velocity.
The functioni(-) is a cost function that may be nonlinear
and nonconvex, as long d$v) # 0 for p; < v < po.
This problem can be written as Problem 1 with= (t,r),

u = vy, and:

Bt x,u)| | =k — Cpr||E|| + Kvg
f(t’x’u)_[fg(t,x) ]_[ ;
ge(u) = |lvall %0 = (ro,To),
F=A{x:x1=rpx0=ry}



Now we can apply Corollary 1 and solve Problem 2 to obtain
optimal solutions of this problem.

IV. SIMULATION RESULTS

Here we present simulation results for a two-dimensional
soft landing problem with nonlinear gravity, as defined in
Problem 3 withr € R?2. Figure 3 shows the piecewise linear
gravity model used in this section. For this example we
seta = Cp = 0. Figures 4 and 5 show the solution to
the relaxed version of Problem 3 given by Problem 2 with
the problem parameters are given as in (32) through (34).
Here the nonlinear gravitational fielgl(r) is approximated
by a piecewise gravitational acceleratig(r), which is as
follows:

g(r) L2 Ar+b;, Vrep, (37)

. . Fig. 1. Polygonal approximation of thrust 2-norm constrain
whereP; is a convex polytope defined by:

P; 2 {r|Pir < p;}. (38)

The feasible space of positions is partitioned intopoly-
topes. In the numerical example in this section we assume T = = 2-nomm constraint
thatg(r) depends only on altitude, and partition the altitude 0.85F —— Polygonal approximation||
into intervals. We then definA; andb; so that the piecewise
linear section for intervalP; is tangent tog(r) at the

midpoint of P;. An example is given in Figure 3. The 2- 0.75

0.9

0.87

norm constraint|(¢)|| < I'(¢t) is approximated by using a =
. X RS . ~, 0.7}
32-sided polygon at each discretization time instancechvhi &
is shown in Figure 1, as follows: 0.65}
aka <Ty jg=1,...,np, (39) 0.6/
0.55}

wheren,, is the number of facets used to approximate the 2-
norm constraint, and; is a vector normal to the facet, scaled 0'8.5/
so that the polytope defined by (39) is an inner approximation

of the hypersphere defined by (¢)|] < T'(t). An example

of such an approximation is given in Figures 1 and 2. Fig. 2. Detail of polygonal approximation of thrust 2-normnetraint.

Given the above approximations of gravity and control
constraints, and the fact that the cost is linear in the slack
variableT", the relaxed optimal control problem, Problem 2
with (32), can be discretized to obtain a Mixed Integer Linea
Program[10] for each final time;. Details are given in the — Tre gravity
Appendix. We useN = 15 discretization time steps The 9 - - -PWL model
resulting MILP can then be solved to global optimality using
highly optimized commercial solvers[11]. Sintgis a scalar
solution variable, we can find the global optimum solution
of the problem by performing a line search on solving a
MILP at each cost computation during the line search. We
use the Golden Search method [4] to do so.

The simulation results in Figure 5 show that the nonconvex at
control magnitude constraints are satisfied as predicted by
Theorem 1. For this example we used = 2m/g, p, =
10m/¢, ro = [2,8] x 10*m, iy = t, = t, = 0. The optimal 2 ‘ ‘ ‘ ‘
solution hadt} = 490s. 0 2 ‘}\ltitude(m‘; 8 10

Acceleration(m/sz)
o

20ur empirical experience has shown that increasing the eunob  Fig. 3. Nonlinear gravity model and piecewise linear (PWiprximation.
discretization steps above N=15 has only a very minor immactthe
resulting solution.
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Fig. 5. Optimal profiles for nonlinear soft landing probleidote the
nonconstant, nonlinear acceleration due to gravity. Thecolvex control
acceleration constraints are satisfied, as predicted bpréhe1l.

V. DISCUSSION

In this section we make some remarks on two alternative
approaches to handling the nonconvex control constraints i
Problem 1. The first approach is to approximate the noncon-
vex constrainfp; < g.(u(t)) as a polytopic stay-out region,
and use binary variables to encode the resulting problem
as a MILP. This was proposed by [14] for a UAV path-
planning problem. Although our convexification approach
also results in a MILP, the number of binary variables is
significantly reduced by removing the nonconvexity in the
control constraints. Since a MILP is worst-case exponéntia
in the number of binary variables, this yields a large im-
provement in the problem complexity.

The second approach is to perform a change of variables
to render the control constraints convex. For lower and uppe
bounds on the 2-norm, as in our practical examples, this can
be achieved by a conversion to polar coordinates. The major
disadvantage of this approach, however, is that it simply
shifts the nonconvexity from the control constraints to the
dynamics. In the case of polar coordinates, this leads to
trigonometric functions in the dynamics. For many problems
in cartesian coordinates, the system dynamics are linghr wi
some structured nonlinearity, which can be approximated as
being piecewise linear without an explosion in the number
of binary variables in the resulting MILP. A conversion
to polar coordinates requires every-dimensional equality
constraint in the dynamics to be modeled as being piecewise
linear. This will typically lead to many more binary variall
than the convexification approach proposed in this paper.

VI. CONCLUSION

This paper provided a lossless convexification of a class of
optimal control problems that have continuous-time nonlin
ear dynamics and nonconvex control constraints. We prove
that the optimal solution to the relaxed problem is the
globally optimal solution to the original nonconvex prafle
We demonstrated the approach in simulation with a planetary
soft landing problem.

APPENDIX

In this section we describe a method for approximating the
relaxation of the infinite-dimensional soft landing prahble
(Problem 3) as a finite-dimensional optimization problem
that can be solved to global optimality using Mixed Integer
Linear Programming (MILP). We introduce the following
approximations:

1) In order to reduce the infinite-dimensional to a finite-
dimensional one, we perform a standard discretization
in time assuming a zero-order hold (ZOH) on the
control inputsu.

2) We approximate the smooth nonlinear functigim(¢))
as a piecewise linear function, as in (37) through (38).

3) We approximate the norm bounds using convex poly-
topic constraints as in (39).

We then show that, for fixed\t, the resulting problem is a
MILP. This means that, by performing a line search a%er
as proposed in [2], we can find the globally optimal solution.



For simplicity of exposition, we assume that mass isind subject tary =ry,tn =1y.
constant, even though this nonlinearity could be handled In Problem 5, the binary variables; are used to indicate
through piecewise linearization in a similar manner to thevhich polytopeP; the positionr, lies in. The constraint
gravity. An alternative method for dealing with time-vargi (48) ensures that at least one of thg is zero at each time
mass, which moves the nonlinearity from the dynamics intstep. For whicheveP; hasz;; = 0, the constraints (45) and

the constraints, was previously proposed by [2].

A. Time discretization

(46) use ‘big-M’ formulation[15] to ensure that the dynamic
equality constraints are satisfied, while (44) ensurestthat
lies inP;. For fixedAt, since all of the constraints are linear,

To perform the time-discretization we define a fixed nuMge cost function is linear, and we have integer variables,

ber of time stepsV, and a time step\¢ such that ; = NAt¢.

Problem 5 is a Mixed Integer Linear Program. This means

Define a discrete-time set of variables that approximate thecan pe solved to global optimality using highly optimized

continuous time variablesy, £ r(kAt), ¥, £ #(kAt). We
restrict the class of control input sequene¢s) andI'(¢) to
be of a zero-order hold type, such that:

T(t) =1 YVt € [kAL, (k+ 1)At)

T(t) =Ty Vi€ [kAt, (k+1)At). (40)

By approximating the gravity valug(r(¢)) as constant for

commercial solvers[11]. Sinc&t is a scalar, we can find the
global optimum to Problem 5 by performing a line search
on At, solving a MILP at each iteration. We use the Golden
Search method[4] to do so.

In summary, the relaxed soft landing problem with non-
linear gravity can be approximated using the approach de-
scribed in this section, and solved to global optimalityngsi

all t € [kAt, (k+1)At], the dynamics of the spacecraft (30)existing techniques.

can be written in discrete-time as:

1
g1 = rp + 0 AL+ —Atz( Tk + g(rk))
2 Mauwet
Fpp1 =1+ At( L g(rk)). (41)
Mayet

Note that these dynamics are still nonlinear due to the
nonlinear dependence gfr;) onr,. The cost function is:

J=AtS Ty, (42)

B. MILP formulation
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