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Abstract— In this paper we consider finite-horizon predictive A number of approaches to chance-constrained predictive
control of dynamic systems subject to stochastic uncertaty;  control have been proposed in recent years. In the case
such uncertainty arises due to exogenous disturbances, meled of Gaussian uncertainty distributions, [1] considerednciea
ing errors, and sensor noise. Stochastic robustness is tyailly . N ’ .
defined using chance constraints, which require that the prb- cpnstramts on |nd|V|dqu scalar.vglues, while [21* [3] eon .
ability of state constraints being violated is below a presibed ~ Sidered chance constraints on joint random variables. This
value. extension to joint random variables is essential if we wish

Prior work showed that in the case of linear system dynamics, to constrain the probability of failure over the entire plan
Gaussian noise and convex state constraints, optimal cha@&c pjng horizon. [7] considered control in nonconvex feasible

constrained predictive control results in a convex optimiation regions, while [8] extended this line of research to arbjtra
problem. Solving this problem in practice, however, requies the g !

evaluation of multivariate Gaussian densities through samling, ~ Probability distributions and hybrid discrete-continsays-

which is time-consuming and inaccurate. tems. The problem of explicitly optimizing feedback design
We propose a new approach to chance-constrained predictive as well as feedforward controls was considered by [4], [6].

control that does not require the evaluation of multivariate  Other related work includes that of [9], which provides

densities. We use a new bounding approach to ensure that . : .
chance constraints are satisfied, while showing empiricaflthat early results on chance-constrained approaches in regedin

the conservatism introduced is small. This is in contrast to horizon.

prior bounding approaches that are extremely conservative By assuming Gaussian distributions for the uncertain
Furthermore we show that the resulting optimization is conex,  variables, and convexity of the feasible region, the work of
and hence amenable to online control design. [2], [3] uses the result of [10] to show that the optimiza-

tion resulting from the chance-constrained predictiveticin
problem is convex, and can therefore be solved effectively

Robust predictive (ofinite horizon control of systems Using standard nonlinear solvers. This approach is limited
subject to stochastic uncertainty has received a great dé@wever, by the need to evaluate the multivariate Gaussian
of attention in recent years[1], [2], [3], [4], [5], [6], [7] integrals in the constraint functions. These integrals are
[8], [9]. Stochastic models can be used to characterize, féPproximated through sampling, which is time-consuming
example, exogenous disturbances, modeling error andisengfd leads to approximation error. In this paper we present a
noise. In many cases, stochastic uncertainty models are m&ew approach that solves the chance-constrained presictiv
realistic than set-bounded models, for example in the cise @ntrol problem without the need for sampling. The key idea
wind disturbances. Previous work has posed problems suhto bound the joint probability of multivariate constrain
as Unmanned Air Vehicle (UAV) path planning [7], chemicalviolation conservatively using Boole’s inequality. Thesatls

reactor control [2] and network traffic control [5] as robusf0 constraints involving the sum of many univariate proba-
predictive control under stochastic uncertainty. bilities, which can be evaluated efficiently. We show that th

For a predictive controller to bmbust it must take into resulting optimization is convex, and can therefore beesblv

account uncertainty so that state constraints, such aaadest efficiently using nonlinear solvers. Critically, we showthvi
avoidance constraints, are not violated. With most stdithas€mpirical examples that the conservatism introduced by the
uncertainty models however, it is not possible to guarantd@unding approach is small. We show also that this is in
that state constraints are satisfied, since there is alwayge s contrast with prior bounding approaches that are conseevat
small probability of an arbitrarily large disturbance occu Py very many orders of magnitude.

ring. Previous work therefore described robustness ingerm 1
of chance constrainfswhich require that the probability . . .
of state constraint violation is below a prescribed value, ' this paper, we are concerned with the following
By setting this value appropriately, the operator can traddScrete-time Linear Time Invariant (LTI) plant:

I. INTRODUCTION

. PROBLEM STATEMENT

conse_rvatism agai_nst performance; a contrql strategyi$_hat Xpi1 = Axy + BYwy, + Buy, 1)
less risky will typically take more fuel or time (and vice .
versa). wherex € R"= is the system statey € R"« are the system

inputs, andw € R™~ is a noise vector. The noise vector can
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x at time stepk, andx’ to denote the transpose of We use Problem 2 (Linear-Gaussian control problem).
P(A) to denote the probability of evert andp(x) to denote ~

the probability distribution function of random variabke ~ Minimize  f(X,U)

We usex to denote the mean of the random variakleand ~ Subjectto: U € Fy

useSx to denote its covariance. Note that the plant definition [ngX N(X, Sx)dz < & -

(1) can model an LTI plant with a fixed-gain linear feedback; X = GraXo + Gz U+ Gy W,
we will use this in Section VI.

In finite-horizon predictive control, we plan over a fintewhereN'(-) is the multivariate normal distribution:
horizon of time instances fromt = 0 to k& = T. For _ 1
notational convenience we 'lift’ the variables of intereser N(X, 8x) = (2m)n/2]Sx [1/2
the time horizon using the following definitions:

e~ 3R (S, E-%) (5)

Note that, sinceSx is not a function of the control inputs

X0 ug wo U, it can be precomputed.
X1 u; w1 Prior worked used this result, together with the convexity
X=1.| U=].| W=1 /. (2)  result of [10], to show that Problem 2 is convex[2], [3].

Convexity of an optimization problem means that a local
optimum is also a global optimum (first-order necessary
conditions for global optimality are also sufficient), amatt
standard nonlinear solvers can find such optima efficiently.
X = Guaxo + GouU + GoowW, (3) Hence [2] showed that the chance constrained control prob-
lem can be solved, in principle, using nonlinear solvers.
where the matrice$?,,, G.., Gz are calculated through Practical implementation of this method, however, recuire
repeated multiplication of the system matrices in (1), seevaluation of the multidimensional integral:
for example [4]. The chance-constrained predictive cdntro ~
problem can now be stated. I(U) = o N (X, Sx)dz. (6)
z¢ Fx
Problem 1 (Chance-constrained control problem). This integral cannot be evaluated in closed form. As a result
[2] use a sampling approach to approximate the value and
its derivatives. In a control problem with, = 4 and
T = 20, the value (6) is an integral in 84 dimensions, hence
P(X¢ Fx)<9 achieving a good approximation requires a very large number
X = GoaXo + GouU + Gau W. of samples. Performing this sampling procedure at each
In other words, we must choose the control inputs to miniteration of the optimization is time-consuming and hence
imize cost, while ensuring that the system state leaves thimits the applicability of the approach to real-time cantr
feasible region with probability at most We assume that problems. Furthermore, since the sample-approximated con
the cost functionf (X, U) is convex inX andU, the control straint function used in the optimization is now a random
constraint seffy; is convex, and the state constraint 8t  variable, the theoretical guarantees of convexity no longe
is a convex polytope. apply. In the next section we present a new approach that
does not require this sampling procedure.

XT ur wT

The lifted system dynamics are given by:

Minimize  f(X,U)
Subjectto: U € Fy

IIl. EXISTING RESULTS
IV. NEwW APPROACH

While notationally simple, Problem 1 is made challenging The new approach can be summarized as follows. First
by the chance constraii?(X ¢ Fx) < 4. There are three we pose an alternative form of Problem 2 that does not
key challenges resulting from this constraint. First, westhu require evaluation of multivariate densities, which wel cal
determine the distribution aX as a function of the control the conservative problemThen we show that a feasible
inputs U. Second, we must perform a multidimensionakolution to the conservative problem is a feasible solution
integral over this distribution. Finally, we must optimiz&h  to Problem 2. Next we show that the conservative problem
constraints on this integral. is convex. Finally, in Section VI we show empirically that

The first of these challenges is removed by the assumfhe conservatism introduced is small.
tions of linear system dynamics and Gaussian noise. In this _
case, the system staleis a Gaussian random variable withA- The Conservative Problem
mean and covariance given explicitly by: The convex polytopic feasible regiafiy can be defined

B B by a conjunction ofV linear inequality constraints:
X= Gzzi() + quU + szW N

Sx = G SxGrg + GawSwGyy,- 4) Fx & m{X ralX < b} @)
i=1

Problem 1 can now be restated as follows: . .
Now consider the following problem:



Problem 3 (Conservative Problem). We can now write the probability of each individual con-

B straint being violated as follows:
Minimize  f(X,U)

. 1 0 (y;—5i)?
Subjectto: U € Fy P@X>b;) =Py, >b;) = 7/ e v dy;.
P(a/X > b;) < ¢ Vi V/2mSy; Jb;
e <o (12)
X = Graxo + GouU + Gz W. Because this is a singlevariate integral, we can express thi
in terms of the standard singlevariate Gaussian cdf:
Lemma 1. Afeasible solution to Problem 3 (the conservative 1 S} bi — Ui
problem) is a feasible solution to Problem 1 (the chancel (aiX > b;) = Word dz =1 — cdf \/S_ ;
constrained problem). N Y 13)
Proof: From (7): where cdf is the standard Gaussian cumulative distribution
N function:
x ¢ F+<x x :alx > b;}. 8 1 x 2
# # LJl{ J ® cdf(z) = —/ e”z dz. (14)
= Vo J_so
Boole’s inequality gives us the following bound for a countin order to evaluate each constraint, we therefore need to
able set of eventsly, ..., An: evaluate cdf) only once. While cdf) cannot be evaluated

in closed form, it can be evaluated quickly and accurately

N . . . . .
using a series expansion or a one-dimensional lookup. In
P U Ai| < Z P(A:). ©) order to evaluate every constraint requiréssuch lookups,

= ! where N is the number of state constraints. This is sig-

Setting A; as the even{a/x > b} gives us: nificantly less computationally intensive than drawing the
very large number of samples necessary to approximate the

P(x ¢ F)< Zp(a/ix > b;). (10) multidimensional integral (6) to the same precision. Hence

f constraints in the conservative control problem (Problém 3

_ ) can be evaluated far more efficiently than in the chance
For a feasible solution to Problem 3 we know thatgnstrained control problem (Problem 1).
>, Pajx > b;) < 6, and henceP(x ¢ F) < 6. The . .
constraints in Problem 1 are therefore satisfied by a femsiff- Gradient Evaluation
solution to Problem 3. O In this section we show that derivatives of the constraints
. . N ip Problem 3 can also be computed efficiently, without the
Problem 3 is therefore a conservative approximation q . -
. . need for sampling. Specifically we want to compute the
Problem 1. In this paper we propose to solve this approxi-~ . : .
S } R . gradient of P(y; > b;) with respect to the control input
mation instead of solving Problem 1. The intuition is that, i sequencd. The chain rule gives:
solving Problem 3, we explicitly optimize the probability o q ' g '
each individual constraint being violated, denoted This OP(y; > bi) o, _
. . . . ’ VuP(y; > b)) = ———=Vu¥. 15
idea of risk allocation was previously proposed by [11], uP(yi > bi) oy; vy (15)
however in that work the optimization of the was carried Tne [ eibniz integral rule gives:

out in a separate optimization step. Other related work[7]

used Boole’s inequality to generate conservative solstion OP(yi > bi) = o 1 /OO 5 ds
but assumed that the were equal and fixed priori, which 9yi i \2m %\/_y
leads to unnecessary conservatism. In the following sestio 1 (b:yi)z
we show that Problem 3 is convex and does not require the = e v | (16)
evaluation of multidimensional integrals. V/2mSy,
and from (11) we have:

B. Constraint Evaluation Vg = G a;. (17)

_ The key difference between Problem 3 and Problem \o,0o the gradient of each constraint in Problem 3 is:
is that Problem 3 no longer involves multivariate integrals o
Instead, it hasV constraints orunivariateintegrals. To see VuP(alX > b)) = VuP(y > b;) = Grudi e—%
this, definey; £ a/x and note thay; is a univariate Gaussian N ! R 215y, '

random variable with mean and variance given by: (18)

Note that this can be evaluated exactly without the need
; , , , for sampling or table lookups. This is possible because
Sy; = ;Gae S Gy + 8;Grw Sl i (11)  problem 3 involves only singlevariate constraints.

Ui = alGpaXo + aiGp, U + Gy W



D. Convexity Fy to be convex. All other constraints are linear, and hence
We now prove that Problem 3 is a convex optimizatiorfOnvex, except for (21). Far < 0.5, we k]r\lfow that a feasible
problem. First we restate Problem 3 using (13) to expres@lution hase; < 0.5 for all i since} ;" ¢; < 6. By the

the probabilities in integral form: definition of cdf-), for (21) to be satisfied with; < 0.5, we
must have; > y;, in which case (21) is convex by Lemma 3.
Problem 4 (Conservative Problem - Integral Form). Hence Problem 4 is convex. Since Problem 4 is equivalent
o _ to Problem 3, Problem 3 is also convex. O
Minimize  f(X,U)
Subjectto: U € Fy E. Summary
1-— cdf(\%;s_y;) <e¢ Vi We have proposed a new conservative approximation of

the chance-constrained control problem. A feasible smiuti
to this approximation is a feasible solution to the original
problem. The conservative problem is convex, meaning that
2 € <0 existing nonlinear solvers can be used to find the globally
optimal solution in practice. Furthermore, the constraint
Lemma 2. cdf(z) is a concave function af in the range: €  values and derivatives needed to perform this optimization
[0, o0]. Hence for\ € [0, 1], if: can be computed without the need for sampling. While the
approach is conservative, we show empirically in Section VI
2 =2l 4+ (1= 2)2® (19) thpapt the conservatism introduced is smgll. g

Ui = 8] GroXo + 2] G U + a)Goy W Vi

then: V. COMPARISON WITHSET CONVERSION TECHNIQUES

cdfiz™)) > Acdfiz™) + (1 — Nedfz?).  (20) Alternative conservative approximations of the chance
constrained problem (Problem 1) have been proposed pre-
viously, for example [4]. One particularly computatiowyall
tractable approach is to convert all stochastic distrdnsi

Proof: Following the proof in [12], concavity comes from
the fact that cdf) is the integral of a function that is

monotonically decreasing in the ran . O
y g _ ge o] into sets. That is, we define, before optimization begins, a
Lemma 3. Forb; > y; the constraint: setG(U) such that the following condition holds:
- Cdf<bl- ~ 1/) - 1) P(X ¢ G(U)) < 6. (24)
V 25y, We can then use algorithms for robust control undet-

is convex in(;, €;). boundeduncertainty to ensure th&t(U) C F,, for example
[13]. This ensures that the required chance constraints are

Proof: Consider two solutiongz'", ¢y and (7%, ¢?)  gatisfied:

that satisfy (21). In order to show convexity, we must show

that (21) is also satisfied b@§*>,e§*>), where\ € [0, 1]: {GU) C Fx} A {P(X ¢ G(U)) <6} = P(X ¢ Fx) (%55)'

() _(¥)y & (1) 032y (M) _ (2)
W e )= (/\yi A =N A6 + (1= Ng ) With Gaussian uncertainty, we typically choose the set
(22)  G(U) to be ellipsoidal with principal axes aligned with the

From Lemma 2 we have: covariance ofX. This leads to a set-bounded problem where
(%) we must optimize the location of the center of the ellipsoid
1— cdf(bi —Yi ) subject to the ellipsoid lying withid'x. The choice of ellip-
\/25y, soidal G(U) leads to tractable determination of the smallest
b — 7D ) ellipsoid size satisfying (24) as well as tractable methfods
<1- Acdf(i> —(1- A)cdf(i> ensuringG(U) C F,; see for example [4], for details. We
V/25y; /25y, now discuss how this set conversion approach relates to our

<1-A1- 651)) — (1 =M1 - 61('2)) — 61(-*)’ (23) new convex optimization approach. In Section VI we provide
an empirical comparison.
where the final ineq>uality comes from knowing that Figure 1 shows, schematically, a two-dimensional Gaus-
37, ey and (57, ) satisfy (21). Hence (21) is satis- sian distribution and an ellipsoid containing exactly 99% o
fied by (gg*), e§*>), which proves the convexity of (21).00 the probability density. In most chance-constrained poisl
of interest, the chance constraint is tight in the optimal
solution. We can measure the conservatism of a particular
approach by the difference between the vaRE ¢ Fy)
Proof: To show convexity of Problem 4 it suffices to showfrom § in the returned solution. With set conversion tech-
that all constraints are convex, since we have assumed théques, the only way thaP(X ¢ Fx) can be close to
the cost functionf(-) is convex. The control constraifit € ¢ is if the feasible region approximates the €&tU), as
Fy is convex since we have assumed the feasible control sgtown in Figure 1. This is, however, extremely unlikely in

Lemma 4. For 6 < 0.5, Problem 4 is convex, and so is
Problem 3 (the conservative problem).



the general case. In most optimization problems of interest B ¢
the feasible region will be significantly larger thét{U) and N
of a different geometry, as in Figure 2. Observe that, using a 4
set conversion approach in this caB€X ¢ Fx) is far below
the constrain®, indicating a great deal of conservatism. As
the dimensionality of the distribution increases, the lefe
conservatism increases dramatically.

Fig. 3. Chance constrained optimization using new convex optimiza-
tion approach. The approach optimally allocates the contribution to
the failure probability from each of the constraints. In the solution
shown, two of the constraints have approximately zero probability of
violation, so the algorithm pushes the mean closer to the upper-left
corner until the probability of violation of the constraints sums to 0.01.
The conservatism introduced by Boole’s inequality is the integral of the
pdf over region B, which is small in practice.

Fig. 1. Chance constrained optimization problem approximated using
ellipsoidal set conversion. Shown is a two-dimensional Gaussian
distribution for X, represented using contours of the pdf (dashed). The  in Section VI that this conservatism is small, while the

thick ellipse is the set G(U) containing 99% of the probability mass. ; ; ;
In this case, the feasible region Fx is almost identical in geometry to set conversion approach Is conservative by many orders of

G(U). The cost is defined so that the mean X moves as far as possible ~magnitude.
in the direction of the arrow. With this particular geometry P(X ¢ Fx)
can be close to the constraint § because the integral of the pdf over VI. SIMULATION RESULTS

Fx is close to the integral over G(U). . . . . .
In this section we show simulation results demonstrating

the new approach. The system to be controlled has zjate
[z}, 5]’ and the system parameters are defined by:

A=Las o] 2=low] m=e=ly W o=l

The noise parameters are:

S, = [0.0001 0 } S = [0.001 0 } Vi

2277,

0 0.0001 0 0.001
(27)
MY o m _ m e 28)
o~ o S V]

Fig. 2. Chance constrained optimization problem with general feasible .
region (geometry dissimilar to G(U)). In the optimal solution returned ~ The constraints on the state are:
by the set conversion method, the set G(U) is constrained to lie within
Fx . Observe that large portions of the pdf are outside G(U) but within —0.25 <y <0.25 VEk. (29)
Fx, meaning that P(X ¢ Fx) is significantly below § in this solution.
Hence the solution is conservative. This conservatism increases as  These are encoded usirdT + 1) linear inequality con-
the dimensionality of the distribution increases. . . . .
straints. The cost is defined as:

Intuitively, a set bounding approach assumes a ‘worst- _ T e ,
case’ scenario, where all constraints contribute equalthe fX,U0) = Z(Xk —x")(x —x"). (30)
overall probability of failure. In most finite-horizon caot k=0

problems, only a small subset of the constraints are agtive in other words, we try to minimize the squared distance of
the optimal solution. We claim, then, that a set conversiothe expected state from some reference stdteaveraged
approach leads to high conservatism. By contrast, the nawer the planning horizon. For the convex optimization we
approach described in this paper optimizes the violationsed Sequential Quadratic Programming, as implemented in
probabilities assigned to each constraint, denetekh doing the Matlabf mi ncon function. Optimization was performed
so it can greatly reduce the conservatism of the solution, @am a MacBook Pro with a 2.4GHz processor and 4GB RAM.
illustrated in Figure 3. This ‘risk allocation’ concept was Figure 4 shows a single solution to the predictive control
proposed first by [11]. problem using the new convex optimization approach. In this
The new approach does introduce conservatism in tlmsex” = [1 0], N =20 andé = 0.01. The new approach
use of Boole’s inequality. However we show empiricallyoptimizes the allocation of risk at each time step, while



. - . _— Algorithm Time (S) |  Prrue Conservatism
ensuring that the probability of failure over the entireibon Convex Optimization 103 00079 057

is less thard. As shown in Figure 6, the risk allocation values | Ejiiptical Set Conversion|  0.22 < 10-6 > 104
€ are tiny _(< 10_8? fQI’ al_l constramt; ex,cept ,for 5 of th_e TABLE I. Optimization time and true probability of failure averaged
42 constraints. This implies that optimizing risk allocati for 20 randomized problem instances with § = 0.01. Instances where
can lead to significant gains over a set conversion approacﬁm chance constraint is not tight have been removed. The convex
which uses am priori fixed backoff from the constraints. optimization approach is orders of magnitude Igss con_serv_ative than
. . . the set conversion approach for a small penalty in solution time.
For the sake of comparison, Figure 5 shows a solution
to the same problem using the elliptical set conversion
approach of [4]. Notice that the state means are very fanultivariate probability densities. By using a consemati
from the constraints compared to the solution in Figure 4ounding approach we ensure that chance constraints are
indicating a great deal of conservatism. This is because thetisfied, and we have shown analytically that the resulting
set conversion approach assumes a ‘worst-case’ allocatioptimization is convex. This means that existing solvers
of risk to each of the constraints over the time horizongan find the globally optimal solution efficiently. Empirica
rather than optimizing the risk allocation. To evaluate theesults showed that the approach is many orders of magnitude
conservatism we performé@® Monte Carlo simulations and less conservative than existing set conversion technifpres
determined the empirical probability of constraint viaa, a small penalty in computation time.
which we refer to as the ‘true’ probability of failurg,, ...
We define the conservatism factor & — Pirue)/Prrue-
For this example, the new convex optimization approach The research described in this paper was carried out in
gave a true probability of failure of 0.0086, and hence iart at the Jet Propulsion Laboratory, California Institof
conservative by a factor of 0.2. The elliptical set comansi Technology, under a contract with the National Aeronautics
approach [4] has a true probability of failure of less tha@nd Space Administration. The author would also like to
10~%, and is hence conservative by a factor of ovet. acknowledge Masahiro Ono, for discussions that made this
paper possible.
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Fig. 4. Single solution using new convex optimization approach for x™ = [1 0}, N = 20 and § = 0.01. The red dots show the state mean x;,
for k =0,..., N. The blue ellipses show the covariance (1-sigma) ellipses for x;. The state constraints are shown as thick black lines. The new
approach optimizes the allocation of risk at each time step, while ensuring that the probability of failure over the entire horizon is less than §.
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Fig. 5. Single solution for x™ = [1 0], N = 20 and § = 0.01, using elliptical set conversion approach of [4]. The state means are very far from
the constraints compared to the solution in Figure 4, indicating a great deal of conservatism.



