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Abstract

We consider a class of finite time horizon optimal control problems for continuous time linear systems with a convex cost, convex
state constraints and non-convex control constraints. We propose a convex relaxation of the non-convex control constraints,
and prove that the optimal solution of the relaxed problem is also an optimal solution for the original problem, which is referred
to as the lossless convexification of the optimal control problem. The lossless convexification enables the use of interior point
methods of convex optimization to obtain globally optimal solutions of the original non-convex optimal control problem. The
solution approach is demonstrated on a number of planetary soft landing optimal control problems.

1 Introduction

This paper analyzes a class of finite time horizon opti-
mal control problems with a convex cost, convex state
and non-convex control constraints. There are a vari-
ety of optimal control problems that fall into this class.
One interesting example is the planetary landing prob-
lem [20,15,1,5], also known as the soft landing problem.
In planetary landing, an autonomous spacecraft lands
on the surface of a planet by using thrusters, which pro-
duce a force vector that has both an upper and a nonzero
lower bound on its magnitude. The nonzero lower bound
exists because the thrusters cannot operate reliably un-
der this bound. This constraint on the magnitude makes
the set of feasible controls non-convex. Solution of plan-
etary soft landing problems are needed for manned and
robotic missions to Mars, the Moon, and asteroids.

The optimal control problems considered in this paper
have convex cost, linear system dynamics and convex
state constraints. Hence the control constraints are the
single source of non-convexity. In this paper, we intro-
duce a convex relaxation of the control constraints, which
proceeds as follows. The non-convex set of feasible con-
trol inputs is replaced by a convex set by introducing a
slack variable. It is first shown that the optimal solution
of the relaxed problem also defines a feasible solution of
the original one when the optimal state trajectory of the
relaxed problem is strictly in the interior of the set of
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feasible states. It is then shown that under further as-
sumptions, the optimal trajectories of the relaxed prob-
lem are also optimal for the original problem. Hence a
lossless convexification can be achieved. We use lossless
convexification to refer to obtaining a convex relaxation
of an optimization problem, where an optimal solution
of the relaxed problem also defines an optimal solution
for the original non-convex problem. These results are
then extended to cases where some portions of the opti-
mal state trajectories for the relaxed problem lie on the
boundary.

In general the existence of the state and control con-
straints means that closed form solutions to the instances
of the relaxed control problem do not exist. We can
overcome this difficulty by considering direct numerical
methods to compute the optimal solutions, where the
original infinite-dimensional control problem is approx-
imated by a finite-dimensional parameter optimization
problem [14,4,9,25]. Since the relaxed control problem
is convex, the resulting parameter optimization problem
is also convex. A convex optimization problem, under
mild computability and regularity assumptions, is solv-
able to global optimality in polynomial time with an
a priori known upper bound on the number of mathe-
matical operations needed [21,6,24]. Hence the convex-
ification leads to a computationally tractable solution
method, which is critically important for autonomous
real-time control applications. By contrast, approaches
that solve the original non-convex problem using non-
linear programming techniques can only guarantee con-
vergence to a local optimum, and can fail to find a fea-
sible solution unless a feasible initial guess is provided
by the user. Examples of such approaches include[13,12],
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which use a nonsmooth Newton method to find the lo-
cal optimum, and [7,18], which use Sequential Quadratic
Programming[22]. For impulsive optimal control prob-
lems, [26] uses a nonlinear optimization approach com-
bined with an approach for exploring different local op-
tima until the global optimum is found, however this ap-
proach does not provide the convergence guarantees of
our convex optimization approach. Finally, the convex-
ification enables the use of receding horizon model pre-
dictive control to obtain a robust feedback control action
[11,19].

The following is a partial list of notation used: IR is the
set of real numbers; a condition is said to hold almost
everywhere in the interval [a, b], a.e. [a, b], if the set of
points in [a, b] where this condition fails to hold is in a
set of measure zero; IRn is the n dimensional real vector
space; ∅ denotes the empty set; ‖v‖ is the 2-norm of the
vector v; 0 is matrix of zeros; I is the identity matrix; ei
is a column vector with its ith entry 1 and other entries
zero; (v1, v2, ..., vm) represents a vector obtained by aug-
menting vectors v1, . . . , vm such that: (v1, v2, ..., vm) :=[
vT1 vT2 . . . vTm

]T ; diag(A1, ..., An), is the matrix with
diagonal blocks formed by matrices A1, ..., An and off-
diagonals are zero matrices of appropriate size; ∂S de-
notes the set of boundary points, intS denotes the inte-
rior, and clS denotes the closure of the set S; IR+ denotes
the set of nonnegative real numbers; U† is defined for U⊂
IRn as U† :=

{
v ∈ IRn : ∃ c ∈IR s.t. vTu=c ∀u ∈ U

}
.

2 Problem Formulation

This section introduces the optimal control problem
studied in this paper. The assumptions introduced here
are used throughout the paper.

Original Optimal Control Problem (OCP)

min
ωt, ωx, u

h0(t0, tf , x(t0), x(tf )) + k

∫ tf

t0

g0(u(t))dt s.t.

ẋ(t) = A(t)x(t) +B(t)u(t) + E(t)w(t)
x(t) ∈ X and u(t) ∈ U a.e. [t0, tf ]

(t0, tf , x(t0), x(tf )) ∈ E
(1)

where t is the time, t0 is the initial time, tf is the finite
final time, x(t) ∈ IRn is the system state, u(t) ∈ IRm is
the control input, w(t)∈IRp is a known exogenous input,
h0 : IR2n+2→IR is a convex function describing the cost
on the end states, g0 : IRm → IR is a convex function
describing the integral cost on the control input, k ≥ 0
is a scalar, A : IR+ → IRn×n, B : IR+ → IRn×m, and
E : IR+→IRn×p are piecewise analytic functions of time,
X ⊆ IRn is the set of feasible states, U ∈ IRm is the set
of feasible control inputs, and E ⊂ IR2n+2 is the set of

feasible boundary conditions

E=
{
z∈IR2n+2: z= ab+Lbωb, ωb=(ωt, ωx)∈IRqe

}
(2)

where ωt ∈ IRqt,e and ωx ∈ IRqx,e are the decision vari-
ables describing the degrees of freedom (DOFs) in the
initial and final states and times, qe = qt,e + qx,e is
the number of DOFs, ab = (at, ax) with at ∈ IR2 and
ax ∈ IR2n are prescribed boundary times and states, re-
spectively, and Lb = diag(Lt, Lx) with Lx ∈ IR2n×qx,e

and Lt∈IR2×qt,e satisfy LTxLx = I and LTt Lt = I. Here
X is a convex set and U is a non-convex set that satisfies

U = U1 \ U2, U2 =
q⋂
i=1

U2,i ⊂ U1 where (3)

U1 and U2 are, respectively, compact convex and open
convex sets with

U2,i = {u ∈ IRm : gi(u) < 1} , i = 1, ..., q, (4)

where gi, i = 1, ..., q, are convex functions that are
bounded on U1, that is, there exists some ḡ ∈ IR such
that gi(u) ≤ ḡ, ∀u ∈ U1, i = 1, ..., q. Note that U2∩∂U1

is empty. This follows from the fact that U2 ⊂ U1 and
U2 ∩ ∂U2 is empty. The main difficulty in the convexifi-

U
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Fig. 1. Non-convex set of feasible control inputs, U , shaded.

cation of the OCP is the non-convex control constraints
defined by the set U (see Figure 1), which is the subject
of this paper.

3 Main Technical Result

This section presents Theorem 2, which is the main the-
oretical result of this paper and it is based on the follow-
ing convex relaxation of the OCP given by (1):

Relaxed Optimal Control Problem (RCP)

min
ωt, ωx, ωξ, u, σ

h0(t0, tf , x(t0), x(tf )) + k ξ(tf ) s.t.

ẋ(t) = A(t)x(t) +B(t)u(t) + E(t)w(t),

ξ̇(t) = σ(t)
x(t) ∈ X and (u(t), σ(t))∈V a.e. [t0, tf ]

(t0, tf , x(t0), x(tf ), ξ(t0), ξ(tf )) ∈ Ẽ

(5)
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where σ(t)∈ IR is a slack control variable, ξ(t)∈ IR is a
slack state variable with ωξ ∈ IR describing its DOF at
tf , ñ = 2n+ 4,

Ẽ=
{̃
z∈IRñ: z̃= ã+ T ω̃, ω̃ = (ωt, ωx, ωξ)∈IRqe+1

}
,

ã = (at, ax,0), T = diag(Lt, Lx, e2),

V =
{

(u, σ)∈IRm+1 :σ≥1 and u∈U1 ∩ V2(σ)
}

(6)

with V2(σ)=
q⋂

i=io

V2,i(σ) where (7)

V2,i(s) :={u ∈ IRm : gi(u)≤s} , io=

{
0 for k > 0

1 fork = 0
.

Figure 2 illustrates the set of feasible control inputs of
RCP, V, versus U of the OCP on the planetary soft land-
ing example described in Section 5. In this case, we have
U =

{
u ∈ IR2 : 1 ≤ ‖u‖ ≤ ρ

}
and

V =
{

(u, σ) ∈ IR3 : σ ≥ 1, ‖u‖ ≤ min(ρ, σ)
}
.

Clearly V is in a higher dimensional space and U ⊂ V.
The set V also contains control inputs that are not feasi-
ble for the OCP. Hence it is not trivial to establish that
an optimal solution of the RCP will also be feasible for
the OCP. We will prove that the minimum fuel optimal
controls of the RCP will satisfy that 1 ≤ ‖u‖ = σ ≤ ρ,
hence will be feasible for the OCP.

Convexification

ux

uy

ux

uy

σ

Non-convex set of

feasible controls

Convex set of

feasible controls

U

V

Fig. 2. Convexification of the Control Magnitude Constraint
for Soft Landing. The annulus represents the actual non-con-
vex control constraints in (ux, uy) space, which is lifted to a
convex cone in (ux, uy, σ) space for the RCP (5).

Definition 1 The sets of all feasible solutions of the
OCP and the RCP, (1) and (5), are denoted by FO and
FR respectively. (t0, tf , x, u)∈FO and (t0, tf , x, ξ, u, σ)∈
FR if they satisfy the differential equations and the state
and the control constraints of the OCP and the RCP re-
spectively a.e. [t0, tf ]. F∗O and F∗R represent the respec-
tive sets of optimal solutions, with optimal costs J∗O and
J∗R.Unless otherwise stated, a solution of OCP or RCP
refers to a globally optimal solution.

The results of this paper will establish useful relation-
ships between the solutions of the OCP given by (1) and
the RCP given by (5).

Theorem 1 Then following relationships hold for the
OCP and RCP given by (1) and (5): (i) If (t0, tf , x, u) ∈
FO, then ∃ (ξ, σ) s.t. (t0, tf , x, ξ, u, σ) ∈ FR.
(ii) If (t0, tf , x, ξ, u, σ) ∈ FR s.t. u(t) ∈ U a.e. [t0, tf ],
then (t0, tf , x, u) ∈ FO.

Proof: Proof of (i): Let σ(t) = maxi=io,...,q gi(u(t)) and
ξ̇(t) = σ(t) with ξ(t0) = 0, which implies that σ(t)≥ 1.
Since U ⊂ V, we have (u(t), σ(t)) ∈ V, also x(t) ∈ X
a.e. [t0, tf ] and (x(t), u(t)) satisfy the dynamics in (1).
Consequently (t0, tf , x, ξ, u, σ)∈FR.

Proof of (ii): Having u(t) ∈ U , x(t) ∈ X a.e. [t0, tf ] and
(x(t), u(t)) satisfying the dynamics in (5) imply that
(t0, tf , x, u)∈FO.

The two conditions below and the following lemmas are
instrumental in our upcoming results.

Condition 1 The pair {A(·), B(·)} is controllable and
the set of feasible controls U satisfies U†2 = {0}.

Condition 2 (t0, tf , x, ξ, u, σ)∈F∗R and(
−kσ(t0)− ∂h0

∂t0
, kσ(tf )− ∂h0

∂tf
,
∂h0

∂x(t0)
,
∂h0

∂x(tf )

)
is not orthogonal to E , where E is given by (2).

(8)

Lemma 1 Consider the system: λ̇(t) = −A(t)Tλ(t),
y(t)=B(t)Tλ(t), defined for t∈ [t0, tf ] where {A(·), B(·)}
a controllable pair. If y(t) = 0 ∀t∈ [t1, t2]⊆ [t0, tf ] then
λ(t) = 0 ∀t∈ [t0, tf ].

Proof: It suffices to show that λ(t) = 0 ∀t∈ [t0, t1] ∪
[t2, tf ]. Since {A(·), B(·)} is controllable, this system is
observable [16]. This, combined with λ(t1) = 0 satisfies
y(t) = 0 ∀t ∈ [t1, t2], implies that λ(t) = 0 ∀t ∈ [t1, t2],
and hence λ(t) = 0 ∀t > t2. Since λ(t) = Φ(t, t0)λ(t0),
where Φ(t, t0) is invertible for t≥ t0, and since λ(t1)=0,
we have λ(t0)=0. As a result λ(t)=0 ∀t ∈ [t0, t1].

Lemma 2 Consider any hyperplane E = {z : z = a+
Tω, ω ∈ IRm} where a ∈ IRn and ω ∈ IRm with m< n.
We say v is orthogonal to E if vT (z1− z2) = 0 for any of
z1 and z2 in E. Then v is orthogonal to E if and only if
v ∈ E†, which is equivalent to TT v = 0.

Proof: The proof follows directly from the discussion
in Section 2.2.1 of [6].

Remark 1 A discussion of Condition 2: Lemma 2 im-
plies that a vector (φ0, φf , ψ0, ψf ) is not orthogonal to E
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if and only if (φ0, φf , ψ0, ψf ) /∈ E†, which is also equiv-
alent to one of the following conditions

LTt

[
φ0

φf

]
6= 0 or LTx

[
ψ0

ψf

]
6= 0. (9)

In many cases it is straightforward to verify this condi-
tion. For example, suppose that t0 is fixed and tf is a free
variable, which implies that Lt = [ 0 1 ]T . If ∂h0/∂tf = 0
and k>0 (which implies that kσ(tf ) > 0), then, by let-
ting φf = kσ(tf )− ∂h0/∂tf , we can show that the first
condition in (9) is satisfied. Another example is when
h0 is a strictly convex function of x(tf ), which satisfies
that ∂h0/∂x(tf ) = Cx(tf ), and x(t0) is specified. Sup-
pose that Cx(tf ) is the free part of the final state. Hence
Lx =

[
0 CT

]T
. Now, if Cx(tf ) 6= 0 for any solution of

the RCP then the second inequality in (9) holds.

Remark 2 A discussion of U†2 = {0}: This condition
can be straightforward to verify in many cases. For ex-
ample, suppose that, for any v̂ ∈ IRm such that ‖v̂‖ = 1,
there exists some a<b such that V (v̂) := {u∈IRm : u =
λv̂, a ≤ λ ≤ b} ⊂ U2. Note that every finite volume set
U2 ⊂ IRm satisfies this property. In this case U†2 ={0}.

Our next theorem presents a fundamental result that
establishes conditions under which u(t) ∈ U a.e. [t0, tf ]
for the solution of the RCP.

Theorem 2 Suppose that Condition 1 holds for the
OCP (1). If (t0, tf , x, ξ, u, σ) satisfies Condition 2 and

x(t) ∈ intX ∀ t ∈ [t0, tf ], (10)

then (t0, tf , x, u)∈FO.

Proof: This result will be proven by showing that an
optimal control input of the RCP satisfies u(t) ∈ U1

and/or u(t) ∈ V2(σ(t)) ∀t ∈ [t0, tf ], hence it is also
feasible for the OCP. This will be done by using the
Maximum Principle of the optimal control theory.

Let (t0, tf , x, ξ, u, σ) ∈ F∗R. Since the condition (10)
holds, by using the Maximum Principle (see Section V.3
of [2] or Chapter 1 of [23]), there exist a constant α ≤ 0
and absolutely continuous vector functions λ and η, the
co-state vectors, such that the following hold:

[i] Nonzero Co-states

µ(t) :=
(
α, λ(t), η(t)

)
6= 0, ∀ t ∈ [t0, tf ]. (11)

[ii] Co-state Dynamics

λ̇(t) = −A(t)Tλ(t)
η̇(t) = 0

a.e. t ∈ [t0, tf ] (12)

[iii] Pointwise Maximum Principle

H (φ(t))=M(t, x(t), ξ(t), µ(t)) a.e. t∈ [t0, tf ] (13)

where H is the Hamiltonian defined by

H(φ) :=ησ+λT [A(t)x+B(t)u+E(t)w(t)] (14)

and M(t, x, ξ, µ) := max
(u, σ)∈V

H(t, x, ξ, u, σ, µ), (15)

φ(t) := (t, x(t), ξ(t), u(t), σ(t), µ(t)) . (16)

[iv] Transversality Condition

LTxGx = 0, LTt Gt = 0, η(tf ) = −αk, (17)

where

Gx =
(
−λ(t0)−α ∂h0

∂x(t0)
, λ(tf )−α ∂h0

∂x(tf )

)
,

Gt =
(
H(φ(t0))−α∂h0

∂t0
,−H(φ(tf ))−α∂h0

∂tf

)
.

The conditions of optimality from (i)-(iii) follow di-
rectly from the statement of the Maximum Principle.
But the transversality condition in (iv) requires fur-
ther explanation. It implies that (see Sec. V.3 of [2]),
for a solution in F∗R, the vector ψ(φ(t0), φ(tf )) :=
(Gt, Gx, η(t0), −η(tf )− αk) must be orthogonal to
the manifold defined by the set of feasible boundary
conditions Ẽ at (φ(t0), φ(tf )). v ∈ Ẽ if and only if
v = ã+Tω where ω ∈ IRqe+1. Hence, by using Lemma
2, ψ(φ(t0), φ(tf )) defined above is orthogonal to Ẽ if
and only if TTψ(φ(t0), φ(tf ))=0, which is equivalent to
equation (17). Next we claim that

y(t) := B(t)Tλ(t) 6= 0 a.e. t ∈ [t0, tf ]. (18)

Since A and B are piecewise analytic functions of time,
λ and y are piecewise analytic over [t0, tf ] (by using The-
orem 3 on p.213 of [8] and the product of analytic func-
tions is also analytic). Hence y has a finite number of in-
tervals, [t1, t2]⊂ [t0, tf ], in which either y(t)=0 or the set
of t for which y(t)=0 is countable (see Proposition 4.1 on
p.41 of [8]). We now show that none of these intervals has
y(t)=0. Suppose that y(t)=0 ∀ t∈ [t1, t2]⊂ [t0, tf ]. Since
η is absolutely continuous with η̇ = 0, η(tf )=−αk from
(17) implies that η(t) =−αk ∀t ∈ [t0, tf ]. Since the pair
{A(·), B(·)} is controllable, it follows from Lemma 1 and
η=−αk that λ(t) = 0 ∀ t∈ [t0, tf ]. Hence the transver-
sality condition (17) implies that:

αLTx


∂h0

∂x(t0)
∂h0

∂x(tf )

=0 and αLTt


−kσ(t0)− ∂h0

∂t0

kσ(tf )− ∂h0

∂tf

=0.

(19)
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Since E is a hyperplane, Lemma 2 implies that
E† =

{
(s, z) : LTt s = 0, LTx z = 0

}
, which, with (19),

concludes that α = 0 when Condition 2 holds. So we
have: (α, λ(t), η(t))=0 a.e. t∈ [t0, tf ]. Since the solution
must also satisfy (11), this is a contradiction, which re-
sulted from assuming the existence of an interval [t1, t2]
such that y(t)=0 ∀t∈ [t1, t2]. Hence no such interval ex-
ists, and the set of times for which y(t)=0 is countable
for every interval. This, combined with the existence
of a finite number of such intervals on t ∈ [t0, tf ], im-
plies that {t : y(t) = 0, t ∈ [t0, tf ]} is a countable set
(see Proposition 4.1 on p.41 of [8]), with measure zero.
Consequently y(t) 6=0 a.e. t∈ [t0, tf ].

Next we will prove that the optimal controls can only
be on the boundary of the feasible set. The pointwise
maximum principle (13) implies that, for a.e. t∈ [t0, tf ],

y(t)Tu(t)− αkσ(t) = max
(z, v) ∈ V

(
y(t)T z − αkv

)
.

Hence, the optimal control pair {u(t), σ(t)}must satisfy:

u(t) = argmax
z∈Z(σ(t))

y(t)T z, (20)

where Z(σ(t)) := U1∩V2(σ(t)). Since U2 ⊂ Z(σ(t)) for
σ(t)≥ 1 and U†2 = {0}, we have Z(σ(t))† = {0}. Hence,
when y(t) 6= 0, the optimization problem in (20) has a
linear, hence convex, cost whose value is not constant
over Z(σ(t)). Therefore, using Theorem 3.1 on p.137 of
[3], we have u(t)∈ ∂Z(σ(t)), which implies that one or
both of the following hold:

u(t) ∈ ∂V2(σ(t)) (21)

u(t) ∈ ∂U1 (22)

If u(t) /∈ ∂U1, we have u(t)∈ ∂V2(σ(t))∩ intU1 for some
σ(t)≥ 1, that is, u(t) ∈ U1 but u(t) /∈ U2. Hence u(t)∈
U1 \U2, i.e., u(t)∈ U . Since x(t)∈X for t ∈ [t0, tf ], (x, u)
satisfy the dynamics in (5), and (t0, tf , x(t0), x(tf ))∈ E ,
we conclude (t0, tf , x, u)∈FO.

When the condition (10) does not hold, the Maximum
Principle used in the proof of Theorem 2 does not neces-
sarily apply (as discussed in Section 36 in Chapter 6 of
[23]). This case requires a different version of the Maxi-
mum Principle that is given by Theorem 25 in [23].

In Section V.7 of [2] the concept of a normal linear system
with respect to the set of feasible controls V is introduced.
It is shown therein that, for a normal linear system, the
optimal controls are the extremal points of V if V is
compact and convex. Theorem 2 gives a weaker condition
showing that the optimal control is in a larger subset of
the boundary of V than just its extreme points.

4 Convexification of the OCP

This section introduces convex relaxations of several
cases of the general OCP given by (1) where the con-
trol constraints satisfy the relationships given by (3). For
each case, we establish that an optimal solution of the
RCP problem is also optimal for the OCP.

Corollary 1 Suppose the OCP given by (1) with k=0
satisfies Condition 1. If (t0, tf , x, ξ, u, σ) satisfies Condi-
tion 2 and the condition (10), then (t0, tf , x, u)∈F∗O.

Proof: If (t0, tf , x, ξ, u, σ)∈F∗R and it satisfies the con-
dition (10), then (t0, tf , x, u) ∈ FO, which follows from
Theorem 2. Since k=0, the RCP and OCP have identi-
cal cost functions. These imply J∗O≤J∗R. Since a feasible
solution inFO defines a feasible solution inFR and k=0,
J∗R≤J∗O. Hence J∗R=J∗O, and (t0, tf , x, u)∈F∗O.

The next class of problems has an integral cost on the
controls and it is applicable to many minimum fuel plan-
etary soft landing applications [1,15,20], where

U = {u ∈ IRm : 1 ≤ g0(u) ≤ ρ}, (23)

that is g1 =g0, q=1, and

U1 = {u ∈ IRm : g0(u) ≤ ρ}. (24)

Then the sets given by (6) and (7) can be shown to be

V =
{

(u, σ) ∈ IRm+1 : σ ≥ 1, g0(u) ≤ min(ρ, σ)
}

V2(σ) = {u ∈ IRm : g0(u) ≤ σ} . (25)

Theorem 3 Suppose that U satisfies (23) and k>0 for
the OCP given by (1). If (t0, tf , x, ξ, u, σ)∈F∗R s.t. u(t)∈
U a.e. [t0, tf ], then (t0, tf , x, u) ∈ F∗O.

Proof: Having u(t) ∈ U a.e. [t0, tf ] implies that
(t0, tf , x, u) ∈ FO (via Theorem 1) and 1 ≤ g0(u(t)) ≤
σ(t) a.e. [t0, tf ]. Suppose that there exists a nonzero
measure set I ⊂ [t0, tf ] such that g0(u(t))<σ(t) ∀t∈I.
Then (t0, tf , x, ξ, u, σ̃)∈FR, where

σ̃(t) =

{
σ(t) for t ∈ Ĩ := [t0, tf ] \ I

g0(u(t)) for t ∈ I
.

Since
∫ tf

t0

σ̃(t)dt=
∫
Ĩ
σ(t)dt+

∫
I
g0(u(t))dt <

∫ tf

t0

σ(t)dt,

the cost of this new feasible solution is less than
J∗R, which is not possible. Hence I must have a
measure zero, that is, g0(u(t)) = σ(t) a.e. [t0, tf ]

and ξ(tf )=
∫ tf

t0

σ(t)dt=
∫ tf

t0

g0(u(t))dt. This and
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(t0, tf , x, u) ∈ FO imply that J∗R ≥ J∗O. For every solu-
tion in F∗O with some u, there is a solution in FR with
the same controls and σ(t) = g0(u(t)). Since the corre-
sponding cost of the RCP is the same as J∗O, J∗R ≤ J∗O.
Consequently, J∗R = J∗O, and (t0, tf , x, u) ∈ F∗O.

The following corollary gives another condition for an
optimal control of the RCP to also define an optimal
solution for the OCP.

Corollary 2 Suppose that U satisfies (23), k > 0, and
Condition 1 is satisfied for the OCP given by (1). If
(t0, tf , x, ξ, u, σ) satisfies Condition 2 and the condition
(10), then (t0, tf , x, u)∈F∗O.

Proof: Theorem 2 implies that (t0, tf , x, u)∈FO, and
hence u(t) ∈ U a.e.[t0, tf ]. Then the proof follows from
Theorem 3.

Given a feasible state trajectory x on some interval
[t0, tf ] for the OCP or the RCP, let

Ti :={t : t∈(t0, tf ) and x(t)∈ intX} and
Tb :=[t0, tf ]\Ti, (26)

and the junction times (Section 36 of [23]), Tj⊂ [t0, tf ],

Tj :={t∈ [t0, tf ] : ∃s > 0, x(τ) ∈ intX for either
τ ∈(t, t+ s) or τ ∈(t−s, t)} (27)

A point t of a set T is called an isolated point, if there
exists a neighborhood of t not containing other points
of T . A set of isolated points is called a discrete set and
any discrete subset of an Euclidean space is countable.

Corollary 3 Suppose that U satisfies (23), k>0, Con-
dition 1 is satisfied, A, B, and Ew are constant in time
for the OCP given by (1). If (t0, tf , x, ξ, u, σ) satisfies
Condition 2 and Tj in (27) is a discrete set, then u(t)∈
U a.e. t∈Ti. Moreover if Tb in (26) is a discrete set then
(t0, tf , x, u) ∈ F∗O.

Proof: Since Tj is a discrete set, for any consecutive
junction times t1 ≤ t2, x(t) ∈ intX for t ∈ (t1, t2) and
x(t1)∈∂X , x(t2)∈∂X . Now pick a large enough integer
a > 0 such that t1 +1/a < t2−1/a. Let ts := t1 +1/a,
te := t2−1/a, xs := x(ts), xe := x(te), and ξs := ξ(ts).
Consider a subproblem of the OCP and RCP, where
we construct trajectories from a specified xs at ts to a
specified final state xe by minimizing the same integral
cost defined by g0. The free variables in the terminal
conditions are ts and ξ(ts) (which determines the cost).
The corresponding portion of the optimal solution of the
RCP over the time interval [ts, te] must also be optimal
for this subproblem. Otherwise there is another solution
of the RCP, (ts, t∗e, x

∗, ξ∗, u∗, σ∗), from xs to xe with less

cost. Then the modified solution (t0, t̂f , x̂, ξ̂, û, σ̂) such
that t̂f = t∗e+(tf−te) and (x̂(t), ξ̂(t), û(t), σ̂(t)) ={

(x(t), ξ(t), u(t), σ(t)) for t ∈ [t0, t̂f ] \ [ts, t∗e]

(x∗(t), ξ∗(t), u∗(t), σ∗(t)) for t ∈ [ts, t∗e]

is also feasible for the main RCP with less cost than J∗R,
which is a contradiction. Since te is free and x is fully
specified at ts and te, the corresponding Lt= [ 0 1 ]T and
Lx= 0 for the set E of the subproblem. The subproblem
has k > 0 and Condition 2 is satisfied (see Remark 1).
Also since x(t) ∈ intX for t ∈ [ts, te] and Condition 1
holds, Corollary 2 implies that u(t) ∈ U for t ∈ [ts, te].
Therefore, since a> 0 can be arbitrarily large, u(t)∈ U
for t∈ (t1, t2). We have Tj = {ti, i= 1, . . .}, ti+1>ti ∀i.
Hence intTi=∪i(ti, ti+1) and the solution of the RCP
has u(t) ∈ U a.e. t∈Ti. Next let Tb be a discrete set with
zero measure. Then, Tb = Tj , [t0, tf ] = clTi, and u(t) ∈
U a.e. [t0, tf ]. Hence (t0, tf , x, u) ∈ F∗O, which follows
from Theorem 3.

Next we extend Corollary 1, by using Corollary 3, to
establish lossless convexification when there is no inte-
gral cost on the control and a portion of the optimal
trajectory of the RCP intersects ∂X . We use a two-step
prioritized optimization approach:

(1) Consider the OCP (1), satisfying Condition 1, where
k = 0, U is given by (23), A(t) = A, B(t) = B, and
E(t)w(t) = ŵ. We call this problem the Step-1 OCP
and its convex relaxation, given by (5), the Step-1 RCP,
which is solved to obtain (t+0 , t

+
f , x

+, ξ+, u+, σ+).

(2) Consider a modified version of the RCP solved
in Step 1, where the cost function is ξ(tf ) (k = 1),
and the boundary conditions are (t0, tf , x(t0), x(tf )) =
(t+0 , t

+
f , x

+(t+0 ), x+(t+f )). We call this problem the Step-
2 RCP, which is solved to obtain (t∗0, t

∗
f , x
∗, ξ∗, u∗, σ∗).

Corollary 4 Suppose that U satisfies (23), k= 0, Con-
dition 1 is satisfied, and A, B, Ew are constant in time
for the OCP given by (1). Suppose that the two-step pri-
oritized optimization approach above is applied. If the
Step-1 RCP is feasible, then Step-2 RCP is feasible. If
(t∗0, t

∗
f , x
∗, ξ∗, u∗, σ∗) satisfies Condition 2 and Tj in (27)

is a discrete set, then u∗(t)∈ U a.e. t ∈ Ti. If in addition
Tb is a discrete set, then (t∗0, t

∗
f , x
∗, u∗)∈F∗O.

Proof: The only constraint added in going from Step-1
to Step 2 is (t0, tf , x(t0), x(tf )) = (t+0 , t

+
f , x

+(t+0 ), x+(t+f )).
Since the Step-1 RCP’s solution also satisfies this con-
straint, it is feasible for Step-2, proving our first claim.
Denote the optimal costs of the Step-1 OCP and RCP
as h∗0 and h+

0 . Since the Step-1 RCP is a relaxation
of the Step-1 OCP, h+

0 ≤ h∗0. Corollary 3 states that,
if Tj is a discrete set then u∗(t) ∈ U a.e. t ∈ Ti. If Tb
is a discrete set, then (t∗0, t

∗
f , x
∗, u∗) is a feasible solu-
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tion to the Step-1 OCP with the additional constraint
(t0, tf , x(t0), x(tf )) = (t+0 , t

+
f , x

+(t+0 ), x+(t+f )), hence
h̄0 := h0(t∗0, t

∗
f , x(t0)∗, x(tf )∗)≥ h∗0. Since h̄0 = h+

0 ≤ h∗0,
h̄0 =h+

0 =h∗0, that is, (t∗0, t
∗
f , x
∗, u∗)∈F∗O.

5 Numerical Examples

An interesting example of the class of problems con-
sidered in this paper is the planetary soft landing
problem [20,10,15,1], where an autonomous vehi-
cle lands at a prescribed location on a planet with
zero relative velocity. A simplified version of this
problem is described in the form given by (1) with
the following parameters: h0(t0, tf , x(t0), x(tf )) =
(x(t0) − z0)TQ0(x(t0) − z0), g0(u) = ‖u‖, E is as
given by (2), X =

{
x∈IR4 : γ

∣∣eT1 x∣∣≤eT2 x
}

, U ={
u∈IR2 : 1≤‖u‖≤ρ

}
, w = −g e2

A=

[
0 I

−θ2I θS

]
, B=E=

[
0

I

]
, S=

[
0 2

−2 0

]

with x = (px, py, vx, vy) is the state of two position and
two velocity coordinates, g=1.5 is the gravitational ac-
celeration, θ is the planet’s rotation rate, ρ= 4, and z0
is the prescribed inital state. Note that, since (A,B) is
controllable and U†2 = {0}, Condition 1 is satisfied. X
defines a cone constraint on the position. The convexifi-
cation due to using the set of controls V instead of U is il-
lustrated in Figure 2 given in Section 3. We use YALMIP
[17] with SDPT-3 [24] as the numerical optimizer.

The first example is a minimum distance problem where
γ = 1/

√
3, z0 = (−15, 20,−10, 1), zf = (0, 0.1, 0, 0), tf is

specified, that is, ax=(z0, zf ), at=(0, tf ), Lx=e1, Lt=
0, Q = e1 eT1 , for two cases tf = 5.5 and tf = 30. The
target is reachable for tf = 30 but not for 5.5. Hence
∂h0/∂(x(t0)) = 0 for the optimal trajectory for tf = 30
but not for tf = 5.5, where the cost is 23.82. Since h0

only depends on x(t0) and k=0, none of the conditions
in (8) are satisfied for tf = 30. So Corollary 1 does not
apply and the simulation results in Figure 3 show that
the control bounds are violated. For tf = 5.5, the sec-
ond condition in (8) is satisfied. Hence Corollary 1 ap-
plies and solution of the RCP produces the optimal so-
lution for the OCP (see Figure 3). Note that for both
cases the state trajectory lies entirely in intX . The sec-
ond example has the following changes: γ = 1 and tf is
free, that is, at = 0 andLt = [0 1]T . We first solve the
minimum distance problem that has an optimal cost of
ρ∗ = 4.712 with tf = 17. Though ρ∗ > 0, since the so-
lution is on ∂X for a period of time and since there is
no integral cost, the solution shown in Figure 4 violates
the control constraints. Next we apply the two step ap-
proach of Corollary 4 with g0(u)=‖u‖. Note that, since
the cost does not depend on the boundary conditions
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Fig. 3. Minimum Distance Problem. In px − py plot: Solid
curve indicates solution for tf = 30, and dotted curve for
tf = 5.5; The square denotes z0; The solid straight lines
indicates the boundaries of X on px−py space.
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Fig. 4. Minimum Distance Problem with prioritization. In
px − py plot: Solid curve indicates solution of Step-1 (with
cost ρ∗ = 4.712), and dotted curve is for Step-2, where the
fuel is minimized; The square denotes z0;The solid straight
lines indicates the boundaries of X on px−py space.

and tf is free with σ(tf )≥1, the hypotheses of Corollary
3 are satisfied. Then we find the minimum fuel solution
among all minimum distance solutions. The trajectory
still intersects with the boundary, but, Corollary 4 states
that the convexification holds elsewhere in time. Indeed
u(t)∈ U ∀t∈ [t0, tf ], hence, via Theorem 3, an optimal
solution of the OCP is obtained.

The last example considers a case where the optimal
trajectory of the relaxed problem has a significant por-
tion of the trajectory on the boundary. In this example
z0 = (−10, 20,−10, 1), zf = 0, γ = 1/

√
3, and tf is free.

The optimal controls for the RCP are in U for all time,
see Figure 5. Since k>0, the resulting trajectory is con-
cluded to be optimal for the OCP by using Theorem 3.
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Fig. 5. Minimum fuel trajectory on the boundary: u(t) ∈ U
for all t ∈ [t0, tf ]. Lossless convexification via Theorem 3.
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6 Conclusions

This paper presents a lossless convexification of a finite
horizon optimal control problem with convex state and
non-convex control constraints. We introduce a convex
relaxation of the problem and show that any optimal so-
lution of the relaxed problem, with the state trajectory
strictly in the interior of the set of feasible states, is also
feasible for the original problem. It is also shown that,
these solutions are also optimal for the original prob-
lem in some general cases. The results are extended to
cases where portions of the optimal state trajectory of
the relaxed problem lie on the boundary of the feasible
set of states. These results enable us to utilize polyno-
mial time convex programming algorithms to solve the
relaxed problem to global optimality to obtain the op-
timal solutions of the original problem. Hence they can
enable real-time optimal path planning algorithms, par-
ticularly in the area of planetary landing space missions.
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