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Abstract— We consider a class of finite time horizon optimal
control problems for continuous time linear systems with a
convex cost, convex state constraints and non-convex control
constraints. We propose a convex relaxation of the non-convex
control constraints, and prove that the optimal solution of the
relaxed problem is also an optimal solution for the original
problem. This lossless convexification approach enables the use
of interior point methods of convex optimization to obtain
globally optimal solutions of the original non-convex optimal
control problem. We demonstrate this solution approach with
a number of planetary soft landing problems.

I. INTRODUCTION

This paper considers a class of finite time horizon optimal
control problems with a convex cost, convex state and non-
convex control constraints. There are a variety of optimal
control problems that fall into this class. One interesting
example, which is also the motivating example of this paper,
is the planetary landing problem[11], [8], also known as the
soft landing problem in the optimal control literature[6]. In
planetary landing, an autonomous spacecraft lands on the
surface of a planet by using thrusters, which can produce
a finite magnitude force vector with an upper and nonzero
lower bounds on the magnitude. The nonzero lower bound
constraint exists due to the fact that the thrusters cannot
operate reliably under this bound; if the thrusters are throttled
below this value, they may not restart, leading to failure of
the mission. This constraint on the magnitude makes the
set of feasible controls non-convex. There are also convex
state constraints that ensure, among other things, that the
spacecraft does not go below the surface of the planet.

The non-convexity of an optimal control problem can
be due to: (i) non-convex cost; (ii) nonlinear state dynam-
ics; (iii) non-convex state constraints; and (iv) non-convex
control constraints. Since the systems considered in this
paper have convex cost, linear system dynamics and convex
state constraints, we only have a single source of non-
convexity, namely the control constraints. In this paper, we
introduce a convex relaxation of the control constraints. This
convex relaxation proceeds as follows. The non-convex set
of feasible control inputs is replaced by a convex set of
feasible control inputs by introducing a slack variable. It is
first shown that the optimal solution of the relaxed problem
also defines a feasible solution of the original one when the
optimal state trajectory of the relaxed problem is strictly in
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the interior of the set of feasible states. It is then shown
that under further assumptions, the optimal trajectories of the
relaxed problem are also optimal for the original problem.
Hence a lossless convexification can be achieved. Here, we
use lossless convexification to refer to obtaining a convex
relaxation of an optimization problem, where an optimal
solution of the relaxed problem also defines an optimal
solution for the original non-convex problem. These results
are also extended to cases where some portions of the optimal
trajectories for the relaxed problem lie on the boundary. The
convexification allows the relaxed problem to be posed as
a finite dimensional convex programming problem, which
can be obtained after a discretization. A generic convex pro-
gramming problem, under mild computability and regularity
assumptions, is solvable in polynomial time and hence it is
computationally tractable [12], [4].

Given the lossless theoretical convexification results, a
class of non-convex optimal control problems, including
planetary soft landing problems[11], [8], can be solved by
using polynomial time algorithms developed for convex
programming [12], [4], [14]. In our previous work we
demonstrated a special case of our convexification result
for Mars landing[1]. The present paper extends this work
to a more general class of control problems. Finally, our
convexification can enable the real-time application of model
predictive control techniques to obtain a robust feedback
control action for these problems [7], [10].

Notation

The following is a partial list of notation used in this
paper: Q = QT > (≥)0 implies that Q is a symmetric
positive (semi-)definite matrix; IR is the set of real numbers;
A condition is said to hold almost everywhere in the interval
[a, b], a.e. [a, b], if the set of points in [a, b] where this
condition fails to hold is contained in a set of measure zero;
IRn is the n dimensional real vector space; ∅ denotes the
empty set; ‖v‖ is the 2-norm of the vector v; ‖v‖p is the p-
norm of the vector v; 0 is matrix of zeros with appropriate
dimension; I is the identity matrix; 1 is the matrix of ones
with appropriate dimensions; ei is a vector of appropriate
dimension with its ith entry +1 and its other entries zeros;
(v1, v2, ..., vm) represents a vector obtained by augmenting
vectors v1, . . . , vm such that:

(v1, v2, ..., vm) ≡
[
vT1 vT2 . . . vTm

]T
.

where vi have arbitrary dimensions. We use ∂S to denote the
set of boundary points of the set S, and use IR+ to denote



the extended real numbers set that includes ±∞. Finally, U⊥

is defined for a set U ⊂ IRn as follows:

U⊥ :=
{
v ∈ IRn : ∃ c ∈ IR s.t. vTu = c ∀u ∈ U

}
.

II. PROBLEM FORMULATION

This section introduces the following finite time horizon
optimal control problem considered in this paper. The as-
sumptions introduced here are used throughout the paper.

Original Optimal Control Problem

min
ωt, ωx, u(·)

h0(t0, tf , x(t0), x(tf )) + k

∫ tf

t0

g0(u(t)) dt

subject to
ẋ(t) = A(t)x(t) +B(t)u(t) + E(t)w(t)
x(t) ∈ X and u(t) ∈ U a.e. [t0, tf ]

(t0, tf , x(t0), x(tf )) ∈ E
(1)

where t is the time, t0 is the initial time, tf is the finite
final time, x ∈ IRn is the system state, u ∈ IRm is the
control input, w is a known exogenous input, h0 : IR2n → IR
is a convex function describing the cost on the end states,
g0 : IRm→ IR is a convex function describing the integral
cost on the control input, k ≥ 0 is a scalar, A : IR+→ IRn×n

and B : IR+ → IRn×m are piecewise analytic functions of
time, X ⊆ IRn is the set of feasible states, U ∈ IRm is
the set of feasible control inputs, and E ⊂ IR2n+2 is the set
of feasible boundary conditions. It is assumed that X is a
convex set and U is a non-convex set such that:

U = U1 \ U2, U2 =
q⋂
i=1

U2,i ⊂ U1, (2)

where U1 is a compact convex set and U2 is an open convex
set with:

U2,i = {u ∈ IRm : gi(u) < 1} , i = 1, ..., q, (3)

with gi, i = 1, ..., q, are convex functions that are bounded
on U1, that is, there exists some ḡ ∈ IR such that gi(u) ≤
ḡ, ∀u ∈ U1, i = 1, ..., q. Note that U2 ∩ ∂U1 is empty. This
follows from the fact that U2 ⊂ U1 and U2 ∩ ∂U2 is empty.
It is assumed that the set of boundary conditions E defines a
smooth manifold and any tangent hyperplane to this manifold
contains the hyperplane EL defined as follows:

EL :=

8><>:
264 t0

tf
x0

xf

375∈ IR2n+2 :
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x0

xf
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–
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ff
,

(4)

where ωt and ωx are free variables describing the degrees
of freedom in the initial and final states and times, ax and
at are prescribed boundary conditions and Lx and Lt are
matrices satisfying LTxLx = I and LTt Lt = I . Note that if
all boundary conditions are prescribed, qe = 0.

III. MAIN TECHNICAL RESULT

This section presents the main theoretical result, given by
Theorem 2, that leads to the convexification results in this
paper. The result is based on the following relaxed version
of the optimal control problem (1):

Relaxed Optimal Control Problem

min
ωt, ωx, ωξ, u(·), σ(·)

h0(t0, tf , x(t0), x(tf )) + k ξ(tf )

subject to
ẋ(t) = A(t)x(t) +B(t)u(t) + E(t)w(t)

ξ̇(t) = σ(t)
x(t) ∈ X and (u(t), σ(t)) ∈ V a.e. [t0, tf ]

(t0, tf , x(t0), x(tf ), ξ(t0), ξ(tf )) ∈ Ẽ :=E×{0}×IR+

(5)

where σ ∈ IR is a slack control variable, ξ ∈ IR is a slack
state variable, and:

V =
{

(u, σ) ∈ IRm+1 : σ≥1 and u∈U1 ∩ V2(σ)
}
(6)

with V2(σ) =
q⋂

i=io

V2,i(σ) where

V2,i(s) := {u ∈ IRm : gi(u) ≤ s} ,

io =
{

0 for k > 0
1 for k = 0 .

(7)

We illustrate the set of feasible control inputs of the relaxed
problem, V , above versus the set U of the original problem
(1) on an example in Figure 1. This illustration applies to the
planetary soft landing example described in detail in Section
V. Here, V belongs to a higher dimensional space and U ⊂
V . Furthermore V also contains control inputs that are not
feasible for the original problem, that is, there exists some
(û, σ̂) ∈ V such that û /∈ U . Hence it is not trivial to establish
that the optimal solutions of the relaxed problem will also
define feasible solutions for the original problem. Note that
if the optimal solutions of the relaxed problem have (u, σ) ∈
∂V then u ∈ U .

Convexification

ux

uy

ux

uy

σ

Non-convex set of
feasible controls

Convex set of
feasible controls

U

V

Fig. 1. Convexification of the Control Magnitude Constraint for
Soft Landing. The annulus represents the actual non-convex control
constraints in ux−uy space, which is lifted to a convex cone in
ux−uy−σ space for the relaxed control problem (5).



In the following results we denote a feasible solution of
the original problem by (t0, tf , x(·), u(·)), and a feasible so-
lution of the relaxed problem by (t0, tf , x(·), ξ(·), u(·), σ(·)),
where x(·) represents the state trajectory for t ∈ [t0, tf ]
and so on. Unless otherwise stated, a solution of the either
optimal control problem above refers to an optimal solution
of the problem. When we refer to a feasible solution of either
problem, we imply that the solution satisfies the differential
equations, and the state and the control constraints of the
problem almost everywhere on [t0, tf ], but it is not neces-
sarily optimal. We refer to any of these problems as feasible
when the problem has a feasible solution.

Our first result states some apparent facts about the rela-
tionship between both optimal control problems.

Theorem 1: Consider the original optimal control problem
given by (1) and its convex relaxation given by (5). Then
following hold:
(i) If (t0, tf , x(·), u(·)) is a feasible solution of the orig-

inal problem, then there exists (ξ(·), σ(·)) such that
(t0, tf , x(·), ξ(·), u(·), σ(·)) is a feasible solution of the
relaxed problem.

(ii) If (t0, tf , x(·), ξ(·), u(·), σ(·)) is a feasible solution of
the relaxed problem such that u(t) ∈ U a.e. [t0, tf ],
then (t0, tf , x(·), u(·)) is feasible solution of the original
problem.
Proof: Suppose that (t0, tf , x(·), u(·)) is a feasible

solution of the original problem. Let

σ(t)= max
i=1,...,q

gi(u(t)) and ξ̇(t) = σ(t) with ξ(t0) = 0,

which implies that σ(t) ≥ 1. Clearly (u(t), σ(t)) ∈
V , as well as x(t) ∈ X a.e. [t0, tf ]. Consequently
(t0, tf , x(·), ξ(·), u(·), σ(·)) is a feasible solution of the re-
laxed problem, which proves the first claim.

Next suppose that (t0, tf , x(·), ξ(·), u(·), σ(·)) is a fea-
sible solution of the relaxed problem such that u(t) ∈
U a.e. [t0, tf ]. Since x(t)∈X a.e. [t0, tf ], (t0, tf , x(·), u(·))
is a feasible solution of the original problem, which com-
pletes the proof of the second claim.

The following conditions are instrumental in proving our
next result.

Condition 1: The pair {A(·), B(·)} is controllable and the
set of feasible controls U satisfies that U⊥2 = {0}.

Condition 2: (t0, tf , x(·), ξ(·), u(·), σ(·)) is an optimal
solution of the relaxed optimal control problem (5) and it
satisfies(
−kσ(t0)− ∂h0

∂t0
, kσ(tf )− ∂h0

∂tf
,

∂h0

∂x(t0)
,

∂h0

∂x(tf )

)
is not orthogonal to EL,

(8)

where EL is given by (4).
Remark 1: A discussion of Condition 2: Lemma 2 in

the Appendix implies that a vector (φ0, φf , ψ0, ψf ) is not
orthogonal to EL if and only if (φ0, φf , ψ0, ψf ) /∈ E⊥L , which
is also equivalent to having one of the following conditions
hold

LTt

[
φ0

φf

]
6= 0 or LTx

[
ψ0

ψf

]
6= 0. (9)

In some cases it is straightforward to see that any feasible
solution of the relaxed or the original problem satisfies this
condition. For example suppose that t0 is fixed and tf is a
free variable, which implies that Lt = [0 1]T . If h0 is not
a function of tf , that is, if ∂h0/∂tf = 0, and k > 0, which
implies that kσ(tf ) > 0. Then, by letting φ0 =−kσ(t0) −
∂h0/∂t0 and φf = kσ(tf ) − ∂h0/∂tf , we can show that
the first condition in (9) is satisfied. This example typically
arises in the minimum fuel optimal control problems.

Remark 2: A discussion of U⊥2 = {0}: This condition
can be quite straightforward to verify in many cases. For
example, suppose that there is an interval contained in U2

along any given direction, that is, for any v̂ ∈ IRm, ‖v̂‖ = 1,
there exist some a < b such that V (v̂) := {u∈ IRm : u =
λv̂, a ≤ λ ≤ b} ⊂ U2. Note that any set U2 with finite
volume in IRm satisfies this property. In this case U⊥2 = {0}.
Our next theorem presents a fundamental result that estab-
lishes conditions under which u(t) ∈ U a.e. [t0, tf ], when
u(·) is obtained from the solution of the relaxed problem.

Theorem 2: Consider the optimal control problem given
by (1) and its convex relaxation given by (5). Suppose
that Condition 1 holds. If an optimal solution (t0, tf , x(·),
ξ(·), u(·), σ(·)) of the relaxed problem satisfies Condition 2
and

x(t) ∈ intX , ∀ t ∈ [t0, tf ], (10)

then (t0, tf , x(·), u(·)) is a feasible solution of the original
problem.

Proof: Let (t0, tf , x(·), ξ(·), u(·), σ(·)) be an optimal
solution of the relaxed control problem (5). Since the condi-
tion (10) holds, by using the Maximum principle (see Section
V.3 of [2] or Chapter 1 of [13]), there exist a constant α ≤ 0
and absolutely continuous vector functions λ(·) and η(·),
which will be referred as the co-state vectors, on [t0, tf ]
such that the following conditions hold:

(i) Nonzero Co-states:

µ(t) :=

 α
λ(t)
η(t)

 6= 0, ∀ t ∈ [t0, tf ]. (11)

(ii) Co-state Dynamics:

λ̇(t) = −A(t)Tλ(t)
η̇(t) = 0

a.e. t ∈ [t0, tf ] (12)

(iii) Pointwise Maximum Principle: For a.e. t∈ [t0, tf ],

H(t, x(t), ξ(t), u(t), σ(t), µ(t))=M(t, x(t), ξ(t), µ(t))
(13)

where H is the Hamiltonian defined by

H(t, x, ξ, u, σ, µ) :=ησ+λT [A(t)x+B(t)u+E(t)w(t)],
(14)

and

M(t, x, ξ, µ) := max
(u, σ) ∈ V

H(t, x, ξ, u, σ, µ). (15)



(iv) Transversality Condition:

LT
x

26664
−λ(t0)−α

∂h0

∂x(t0)

λ(tf )−α ∂h0

∂x(tf )

37775=0,

LT
t

2664 H(φ(t0))−α
∂h0

∂t0

−H(φ(tf ))−α∂h0

∂tf

3775=0, η(tf )=−αk where

(16)

φ(t) := (t, x(t), ξ(t), u(t), σ(t), α, λ(t), η(t)) . (17)

The necessary conditions of optimality from (i)-(iii) are
directly obtained by using the statement of the pointwise
maximum principle, where we use the fact that U is a
constant set, i.e., it does not depend on time or state. However
the transversality condition given in (iv) requires further
explanation. The transversality condition, for an optimal
solution of the relaxed problem, states that (see Sec. V.3
of [2]) the vector ψ(φ(t0), φ(tf )) defined as follows(
H(φ(t0))−α∂h0

∂t0
, −H(φ(tf ))−α∂h0

∂tf
,−λ(t0)−α ∂h0

∂x(t0)
,

λ(tf )−α ∂h0

∂x(tf )
,−η(t0), −η(tf )−αk

)
must be orthogonal to the manifold defined by the set

of feasible boundary conditions Ẽ at (φ(t0), φ(tf )). Given
any point (t0, tf , x(t0), x(tf ), ξ(t0), ξ(tf )) ∈ Ẽ , by using
the condition (4), the corresponding tangent plane to the
manifold defined by Ẽ at that point contains the following
hyperplane

ẼL = EL ×
{
z ∈ IR2 : z = κ

[
0
1

]
, κ ∈ IR

}
.

Consequently a vector is orthogonal to the tangent hyper-
plane of the manifold defined by the set Ẽ only if it is also
orthogonal to ẼL. A vector v ∈ ẼL if and only if it can be
expressed as follows

v =


at
ax
0
0


︸ ︷︷ ︸

ã

+


Lt 0 0
0 Lx 0
0 0 0
0 0 1


︸ ︷︷ ︸

T

 ωt
ωx
ωξ



for some ωt, ωx, ωξ, that is,

ẼL = {v ∈ IR2n+4 : v = ã+ Tω, ω ∈ IRqe+1}.

Hence, by using Lemma 2 in the Appendix, ψ(φ(t0), φ(tf ))
defined above is orthogonal to ẼL if and only if
TTψ(φ(t0), φ(tf )) = 0, which is equivalent to the equation
(16). Now we claim that

y(t) := B(t)Tλ(t) 6= 0 a.e. t ∈ [t0, tf ]. (18)

Since A is a piecewise analytic matrix valued function of
time, λ is piecewise analytic over [t0, tf ] (see Theorem 3
on p.213 of [5]). Consequently, since the product of analytic
functions is also analytic, y is also piecewise analytic over

the time interval. Hence y has a finite number of intervals,
[t1, t2]⊂ [t0, tf ], in which either y(t) = 0 ∀y ∈ [t1, t2] , or
the set of t ∈ [t1, t2] for which y(t) = 0 is countable (see
Proposition 4.1 on p.41 of [5]). We now show that none of
these intervals has y(t)=0 ∀y ∈ [t1, t2].

Let us assume that there exists an interval [t1, t2] ⊂
[t0, tf ] such that y(t) = 0 ∀ t ∈ [t1, t2]. First note that
the transversality condition (16) implies that η(tf ) =−αk.
Since η is absolutely continuous with η̇ = 0, by using (16),
this implies that η(t) = −αk ∀t ∈ [t0, tf ]. Since the pair
{A(·), B(·)} is controllable, it follows from Lemma 1 in the
Appendix and η=−αk that λ(t)=0 ∀ t∈ [t0, tf ]. Hence the
transversality condition (16) implies that:

αLTx


∂h0

∂x(t0)

∂h0

∂x(tf )

=0 and αLTt

 −kσ(t0)− ∂h0

∂t0

kσ(tf )− ∂h0

∂tf

=0.

(19)
Note that, by using Lemma 2 in the Appendix, EL is a

hyperplane with:

E⊥L =
{

(s, z) : LTt s = 0, LTx z = 0
}
. (20)

This, combined with the equalities in (19), implies that α = 0
when the condition given by (8) holds. As a result we have:
(α, λ(t), η(t)) = 0 a.e. t ∈ [t0, tf ]. Since the solution must
satisfy the necessary condition (11), this is a contradiction,
which resulted from assuming that there exists an interval
[t1, t2] such that y(t) = 0 ∀t ∈ [t1, t2]. Hence no such
interval exists, which implies that for every interval the set of
t ∈ [t1, t2] for which y(t) = 0 is countable. This, combined
with the fact that there is a finite number of such intervals
on t ∈ [t0, tf ], implies that the set Z = {t : y(t) = 0, t ∈
[t0, tf ]} is a countable subset of [t0, tf ] (see Proposition 4.1
on p.41 of [5]). Since a countable set has a measure zero,
this shows that y(t) 6= 0 a.e. t ∈ [t0, tf ].

Next we will prove that the optimal controls can only be
on the boundary of the feasible set. The pointwise maximum
principle implies that the optimal controls must satisfy, for
a.e. t ∈ [t0, tf ],

y(t)Tu(t)− αkσ(t) = max
(z, v) ∈ V

y(t)T z − αkv.

Hence, the optimal control pair {u(t), σ(t)} must satisfy:

u(t)=argmax
z ∈ Z(σ(t))

y(t)T z where Z(σ(t)) := U1 ∩ V2(σ(t)).

(21)
Since U2 ⊂ Z(σ(t)) for σ(t) ≥ 1 and U⊥2 = {0}, we have
Z(σ(t))⊥ = {0}. Hence, when y(t) 6= 0, the optimization
problem (21) has a cost whose value is not constant over
Z(σ(t)). Since the cost is not constant and it is convex
on Z(σ(t)), using Theorem 3.1 on p.137 of [3], u(t) ∈
∂Z(σ(t)). This implies that one or both of the following
hold:

u(t) ∈ ∂V2(σ(t)) (22)
u(t) ∈ ∂U1 (23)



Hence if u(t) /∈ ∂U1, we have u(t) ∈ ∂V2(σ(t)) ∩ intU1

for some σ(t) ≥ 1, which then implies that u(t) ∈ U1 but
u(t) /∈ U2. Consequently u(t) ∈ U1 \U2, which implies that
u(t)∈U . Since x(t)∈X for t ∈ [t0, tf ], (t0, tf , x(·), u(·)) is
a feasible solution of the original problem.

IV. CONVEXIFICATION OF THE OPTIMAL CONTROL
PROBLEM

This section introduces convex relaxations of several cases
of the general optimal control problem given by (1). For each
case, we establish that an optimal solution of the relaxed
control problem is also optimal for the original problem.

Corollary 1: Consider the original optimal control prob-
lem given by (1) with k = 0 and its convex relax-
ation given by (5). Suppose that Condition 1 holds. If
(t0, tf , x(·), ξ(·), u(·), σ(·)) is an optimal solution of the
relaxed problem satisfying Condition 2 and the condition
given by (10), then (t0, tf , x(·), u(·)) is an optimal solution
for the original problem (1).

The next control problem has an integral cost on the
control effort and it is applicable to many soft landing
applications where fuel use must be minimized [1], [8], [11].
We assume that the set of feasible controls is given by

U = {u ∈ IRm : 1 ≤ g0(u) ≤ ρ}, (24)

that is g1 =g0, q=1, and:

U1 = {u ∈ IRm : g0(u) ≤ ρ}. (25)

Theorem 3: Consider the optimal control problem (1) and
its convex relaxation given by (5), where U satisfies (24) and
k > 0. If (t0, tf , x(·), ξ(·), u(·), σ(·)) is an optimal solution
of the relaxed problem such that u(t) ∈ U a.e. [t0, tf ],
then (t0, tf , x(·), u(·)) is an optimal solution of the original
problem.

Proof: Since u(t) ∈ U a.e. [t0, tf ], 1 ≤ g0(u(t)) ≤
σ(t)≤ ρ a.e. [t0, tf ] . Suppose that there exists I ⊂ [t0, tf ]
such that I is a set of nonzero measure and g0(u(t))<σ(t)
for t∈I. This implies that (t0, tf , x(·), ξ(·), u(·), σ̃(·)) is a
feasible solution of the relaxed problem, where:

σ̃(t) =
{

σ(t) for t ∈ Ĩ := [t0, tf ] \ I
g0(u(t)) for t ∈ I .

Furthermore since:
∫ tf
t0
σ̃(t)dt =

∫
Ĩ σ(t)dt+

∫
I g0(u(t))dt<∫ tf

t0
σ(t)dt, the cost of this new solution is less than the

optimal solution, which is not possible. Hence I must have
a measure zero, that is, g0(u(t)) = σ(t) a.e. [t0, tf ]. This
then implies that the cost function in the relaxed problem
is identical to the cost function in the original problem,
since: ξ(tf ) =

∫ tf
t0
σ(t)dt =

∫ tf
t0
g0(u(t))dt. Note that 1 ≤

g0(u(t)) = σ(t) ≤ ρ, which implies that u(t)∈U a.e. [t0, tf ].
Then, following from Theorem 1 (t0, tf , x(·), u(·)) is feasi-
ble for the original problem. Since the cost functions are
identical and the optimal control for the relaxed problem is
feasible for the original problem, we know that the cost of
the optimal solution to the relaxed problem is greater than
or equal to the optimal cost of the original problem. Next

for every feasible solution of the original problem (1) with
the optimal control input u(·), there exists a feasible solution
of the relaxed problem (5) with the same control input and
σ(t) = g0(u(t)). Since the corresponding cost function of
the relaxed problem is the same as the cost function of the
original problem, this means that the optimal cost of the
relaxed problem is equal to, or less than, the optimal cost of
the original problem. From the above discussion, the optimal
solution to the relaxed problem also gives an optimal solution
of the original problem, which completes the proof.

Corollary 2: Consider the optimal control problem (1)
and its convex relaxation given by (5), where U satisfies
(24), k>0, and h0 =0. Suppose that Condition 1 is satisfied.
Then, if (t0, tf ,x(·),ξ(·), u(·), σ(·)) is an optimal solution of
the relaxed problem satisfying Condition 2 and the condition
given by (10), then (t0, tf , x(·), u(·)) is an optimal solution
of the original problem.

V. NUMERICAL EXAMPLES

An interesting example to the class of problems considered
in this paper is the planetary soft landing problem [11],
[8], [1], where an autonomous vehicle lands at a prescribed
location on a planet with zero relative velocity. A simplified
version of this problem is described in the form given by
(1) with the following parameters: h0(t0, tf , x(t0), x(tf ))=
(x(t0)−z0)TQ0(x(t0)−z0), g0(u)=‖u‖, E is as given by (4),
X =

{
x∈ IR4 : γ

∣∣eT1 x∣∣≤eT2 x
}

, U=
{
u∈ IR2 : 1≤‖u‖≤ρ

}
,

A=

»
0 I
−θ2I θS

–
, B=E=

»
0
I

–
, w=−ge2, S=

»
0 2
−2 0

–
with x = (px, py, vx, vy) is the state of two position

and two velocity coordinates, g = 1.5 is the gravitational
acceleration, θ is the planet’s rotation rate, ρ = 4, and z0
is thez prescribed inital state.Note that, since (A,B) is
controllable and U⊥2 = {0}, Condition 1 is satisfied. X
defines a cone constraint on the position.The convexification
due to using the set of controls V instead of U is illustrated
in Figure 1 given in Section III. We use YALMIP [9] with
SDPT-3 [14] as the numerical optimizer.

In the first set of simulations we consider a minimum
distance problem where g = 1.5, p = 1, γ = 1/

√
3,

z0 = (−15, 20,−10, 1), tf is specified, that is, ax = (z0, zf ),
at=(0, tf ), Lx=e1 Lt=0, wt = 0, t̂ = tf , Q=e1eT1 ,
with zf = (0, 0.1, 0, 0). Here we compare two cases with
different maneuver times, one with tf = 5.5 and the other
with tf = 30. The target is reachable for tf = 30, hence the
optimal value of the cost is zero, that is, ∂h0/∂(x(t0)) = 0
for the optimal trajectory. Since h0 only depends on x(t0)
and k = 0, none of the conditions in (8) are satisfied. The
simulation results given in Figure 2 show that the control
bounds are violated for tf = 30. For tf = 5.5 the value of the
optimal cost is 23.82 and hence ∂h0/∂(x(t0)) 6= 0 implying
that the second condition in (8) is satisfied. Hence Corollary
1 applies and solution of the relaxed problem produces the
optimal solution for the original one (see simulation results
in Figure 2). Note that for both cases the state trajectory lies
entirely in intX .
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tf = 30, and dotted lines for tf = 5.5. The square in px− py plot
denotes z0. The red lines in px−py plot indicates the boundaries of
the set of feasible states projected on px−py space, and the circular
annulus in ux − uy plot indicates the set of feasible controls.
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Fig. 3. Minimum fuel versus minimum energy solutions: Dashed
line is for the minimum fuel state trajectory. The control input
for minimum fuel has a maximum-minimum-maximum magnitude
response, while the minimum energy control input is a smooth
function of time.

In the third set of simulations, we show a comparison of
different cost metrics on the control effort, namely the fuel
and energy. In the fuel minimization, we have p = 1 in (V)
and p = 2 in the energy minimization. Figure 3 shows the
comparison between two solutions with the same initial states
where the fuel and the energy are minimized. The minimum
fuel control input is either at the minimum magnitude or
at the maximum magnitude, which is typical for minimum
fuel solutions, and the control input for the minimum energy
trajectory is a smooth function. In both cases the optimal
solution of the relaxed problem produced state trajectories
in intX . Consequently, by using Corollary 2, the solutions
are also optimal for the original problems.

VI. CONCLUSIONS

In this paper, we present a lossless convexification of a
finite horizon optimal control problem with convex state
and non-convex control constraints. We introduce a convex
relaxation of the problem and show that any optimal solution
of the relaxed problem, with the state trajectory strictly in
the interior of the set of feasible states, is also feasible
for the original problem. These results enable us to utilize
polynomial time convex programming algorithms to solve
the relaxed problem to global optimality to obtain optimal
solutions of the original problem for a number of applications
of practical importance.
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APPENDIX

Lemma 1: Consider the system: λ̇(t) = −A(t)Tλ(t),
y(t)=B(t)Tλ(t), defined for t∈ [t0, tf ] where {A(·), B(·)}
a controllable pair. If y(t) = 0 ∀t ∈ [t1, t2] ⊆ [t0, tf ] then
λ(t) = 0 ∀t∈ [t0, tf ].

Proof: The proof follows from standard arguments on
controllability and observability of linear systems.

Lemma 2: Consider a hyperplane E={z : z=a+Tω, ω∈
IRm} where a∈ IRn and ω∈ IRm with m<n. We say v is
orthogonal to E if vT (z1−z2)=0 for any of z1 and z2 in E .
Then v is orthogonal to E if and only if v ∈ E⊥, which is
equivalent to TT v=0.

Proof: The proof follows directly from the discussion
in Section 2.2.1 of [4].
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